Watson Amy E, Guitton Baptiste, Soriano Alexandre, Rivallan Ronan, Vignes Hélène, Farrera Isabelle, Huettel Bruno, Arnaiz Catalina, Falavigna Vítor da Silveira, Coupel-Ledru Aude, Segura Vincent, Sarah Gautier, Dufayard Jean-François, Sidibe-Bocs Stéphanie, Costes Evelyne, Andrés Fernando
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.
CIRAD, UMR AGAP Institut, Montpellier, France.
Front Plant Sci. 2024 Feb 21;15:1352757. doi: 10.3389/fpls.2024.1352757. eCollection 2024.
The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified , a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of () genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for in budbreak, potentially via redox-mediated signaling and gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.
苹果花芽萌发的时间对果实产量和品质有重大影响。花芽萌发是一个复杂分子机制的结果,该机制依赖于外部环境线索(主要是温度)的精确整合。为了理解这一机制,特别是有助于适应气候变化,许多关于花芽萌发的研究已经在第9连锁群(LG)顶部鉴定出一个数量性状基因座(QTL),但其 underlying 基因仍然难以捉摸。在这里,我们与一个包含239个品种的鲜食苹果核心种质库一起,使用靶向捕获测序方法来提高已知或疑似开花时间相关基因的苹果直系同源基因以及LG9 QTL区间内约200个基因的单核苷酸多态性(SNP)分辨率。这使得275223个SNP Axiom Apple 480K阵列数据集增加了另外40857个标记。稳健的全基因组关联研究(GWAS)分析确定了一个过氧化物酶超家族基因作为一个强有力的候选基因,该基因表现出与休眠相关的表达模式,并在低温处理下下调。分析还预测,与晚花芽萌发相关的SNP等位基因导致的残基变化可能会改变蛋白质构象并可能影响其功能。与对照品种(如嘎啦)相比,该SNP等位基因纯合的晚花芽萌发品种还显示出与耐寒性和感知相关的()基因的表达显著上调。综上所述,这些结果表明在花芽萌发中发挥作用,可能是通过氧化还原介导的信号传导和基因调控。展望未来,这为深入理解温度对开花时间的影响以及氧化还原过程如何影响休眠途径中外部线索的整合提供了一个重点研究方向。