Nasr Ahmed, Sullivan Katrina J, Chan Emily W, Wong Coralie A, Benchimol Eric I
Department of Pediatric Surgery, Children's Hospital of Eastern Ontario.
Faculty of Medicine, University of Ottawa.
Clin Epidemiol. 2017 Nov 14;9:579-590. doi: 10.2147/CLEP.S148890. eCollection 2017.
Incidence rates of Hirschsprung disease (HD) vary by geographical region, yet no recent population-based estimate exists for Canada. The objective of our study was to validate and use health administrative data from Ontario, Canada to describe trends in incidence of HD between 1991 and 2013.
To identify children with HD we tested algorithms consisting of a combination of diagnostic, procedural, and intervention codes against the reference standard of abstracted clinical charts from a tertiary pediatric hospital. The algorithm with the highest positive predictive value (PPV) that could maintain high sensitivity was applied to health administrative data from April 31, 1991 to March 31, 2014 (fiscal years 1991-2013) to determine annual incidence. Temporal trends were evaluated using Poisson regression, controlling for sex as a covariate.
The selected algorithm was highly sensitive (93.5%) and specific (>99.9%) with excellent predictive abilities (PPV 89.6% and negative predictive value >99.9%). Using the algorithm, a total of 679 patients diagnosed with HD were identified in Ontario between 1991 and 2013. The overall incidence during this time was 2.05 per 10,000 live births (or 1 in 4,868 live births). The incidence did not change significantly over time (odds ratio 0.998, 95% confidence interval 0.983-1.013, = 0.80).
Ontario health administrative data can be used to accurately identify cases of HD and describe trends in incidence. There has not been a significant change in HD incidence over time in Ontario between 1991 and 2013.
先天性巨结肠症(HD)的发病率因地理区域而异,但加拿大近期尚无基于人群的估计数据。我们研究的目的是验证并使用加拿大安大略省的卫生行政数据来描述1991年至2013年间HD发病率的趋势。
为了识别患有HD的儿童,我们针对一家三级儿科医院的抽象临床图表参考标准,测试了由诊断、程序和干预代码组合而成的算法。将具有最高阳性预测值(PPV)且能保持高灵敏度的算法应用于1991年4月31日至2014年3月31日(1991 - 2013财政年度)的卫生行政数据,以确定年发病率。使用泊松回归评估时间趋势,并将性别作为协变量进行控制。
所选算法具有高灵敏度(93.5%)和高特异性(>99.9%),预测能力出色(PPV为89.6%,阴性预测值>99.9%)。使用该算法,1991年至2013年间在安大略省共识别出679例诊断为HD的患者。在此期间的总体发病率为每10,000例活产2.05例(即4,868例活产中有1例)。发病率随时间没有显著变化(优势比0.998,95%置信区间0.983 - 1.013,P = 0.80)。
安大略省的卫生行政数据可用于准确识别HD病例并描述发病率趋势。1991年至2013年间,安大略省HD的发病率随时间没有显著变化。