NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Hum Brain Mapp. 2018 Mar;39(3):1093-1107. doi: 10.1002/hbm.23894. Epub 2017 Nov 27.
Fluid-attenuated Inversion Recovery (FLAIR) and dual T2w and proton density (PD) magnetic resonance images (MRIs) are considered to be the optimum sequences for detecting white matter hyperintensities (WMHs) in aging and Alzheimer's disease populations. However, many existing large multisite studies forgo their acquisition in favor of other MRI sequences due to economic and time constraints.
In this article, we have investigated whether FLAIR and T2w/PD sequences are necessary to detect WMHs in Alzheimer's and aging studies, compared to using only T1w images. Using a previously validated automated tool based on a Random Forests classifier, WMHs were segmented for the baseline visits of subjects from ADC, ADNI1, and ADNI2/GO studies with and without T2w/PD and FLAIR information. The obtained WMH loads (WMHLs) in different lobes were then correlated with manually segmented WMHLs, each other, age, cognitive, and clinical measures to assess the strength of the correlations with and without using T2w/PD and FLAIR information.
The WMHLs obtained from T1w-Only segmentations correlated with the manual WMHLs (ADNI1: r = .743, p < .001, ADNI2/GO: r = .904, p < .001), segmentations obtained from T1w + T2w + PD for ADNI1 (r = .888, p < .001) and T1w + FLAIR for ADNI2/GO (r = .969, p < .001), age (ADNI1: r = .391, p < .001, ADNI2/GO: r = .466, p < .001), and ADAS13 (ADNI1: r = .227, p < .001, ADNI2/GO: r = .190, p < 0.001), and NPI (ADNI1: r = .290, p < .001, ADNI2/GO: r = 0.144, p < .001), controlling for age.
Our results suggest that while T2w/PD and FLAIR provide more accurate estimates of the true WMHLs, T1w-Only segmentations can still provide estimates that hold strong correlations with the actual WMHLs, age, and performance on various cognitive/clinical scales, giving added value to datasets where T2w/PD or FLAIR are not available.
液衰减反转恢复(FLAIR)和双 T2w 和质子密度(PD)磁共振图像(MRI)被认为是检测老化和阿尔茨海默病人群中脑白质高信号(WMHs)的最佳序列。然而,由于经济和时间限制,许多现有的大型多中心研究都放弃了这些序列的采集,转而采用其他 MRI 序列。
在本文中,我们研究了在阿尔茨海默病和老化研究中,与使用 T1w 图像相比,是否需要使用 FLAIR 和 T2w/PD 序列来检测 WMHs。使用基于随机森林分类器的先前验证的自动工具,对 ADC、ADNI1 和 ADNI2/GO 研究中基线访视的受试者进行 FLAIR 和 T2w/PD 信息的 WMH 分割。然后,将不同脑叶获得的脑白质负荷(WMHL)与手动分割的 WMHL、彼此、年龄、认知和临床测量值相关联,以评估使用和不使用 T2w/PD 和 FLAIR 信息时的相关性强度。
仅从 T1w 分割获得的 WMHL 与手动 WMHL 相关(ADNI1:r=.743,p<.001,ADNI2/GO:r=.904,p<.001),从 T1w+T2w+PD 获得的分割用于 ADNI1(r=.888,p<.001)和 T1w+FLAIR 用于 ADNI2/GO(r=.969,p<.001),年龄(ADNI1:r=.391,p<.001,ADNI2/GO:r=.466,p<.001)和 ADAS13(ADNI1:r=.227,p<.001,ADNI2/GO:r=.190,p<.001),和 NPI(ADNI1:r=.290,p<.001,ADNI2/GO:r=.144,p<.001),控制年龄。
我们的结果表明,虽然 T2w/PD 和 FLAIR 提供了更准确的真实 WMHL 估计值,但仅从 T1w 分割仍然可以提供与实际 WMHL、年龄以及各种认知/临床量表上的表现具有强相关性的估计值,这为 T2w/PD 或 FLAIR 不可用的数据集提供了附加值。