Suppr超能文献

基于 T1w 的脑白质高信号体积分割在老龄化大样本数据集的验证。

Validation of T1w-based segmentations of white matter hyperintensity volumes in large-scale datasets of aging.

机构信息

NeuroImaging and Surgical Tools Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

出版信息

Hum Brain Mapp. 2018 Mar;39(3):1093-1107. doi: 10.1002/hbm.23894. Epub 2017 Nov 27.

Abstract

INTRODUCTION

Fluid-attenuated Inversion Recovery (FLAIR) and dual T2w and proton density (PD) magnetic resonance images (MRIs) are considered to be the optimum sequences for detecting white matter hyperintensities (WMHs) in aging and Alzheimer's disease populations. However, many existing large multisite studies forgo their acquisition in favor of other MRI sequences due to economic and time constraints.

METHODS

In this article, we have investigated whether FLAIR and T2w/PD sequences are necessary to detect WMHs in Alzheimer's and aging studies, compared to using only T1w images. Using a previously validated automated tool based on a Random Forests classifier, WMHs were segmented for the baseline visits of subjects from ADC, ADNI1, and ADNI2/GO studies with and without T2w/PD and FLAIR information. The obtained WMH loads (WMHLs) in different lobes were then correlated with manually segmented WMHLs, each other, age, cognitive, and clinical measures to assess the strength of the correlations with and without using T2w/PD and FLAIR information.

RESULTS

The WMHLs obtained from T1w-Only segmentations correlated with the manual WMHLs (ADNI1: r = .743, p < .001, ADNI2/GO: r = .904, p < .001), segmentations obtained from T1w + T2w + PD for ADNI1 (r = .888, p < .001) and T1w + FLAIR for ADNI2/GO (r = .969, p < .001), age (ADNI1: r = .391, p < .001, ADNI2/GO: r = .466, p < .001), and ADAS13 (ADNI1: r = .227, p < .001, ADNI2/GO: r = .190, p < 0.001), and NPI (ADNI1: r = .290, p < .001, ADNI2/GO: r = 0.144, p < .001), controlling for age.

CONCLUSION

Our results suggest that while T2w/PD and FLAIR provide more accurate estimates of the true WMHLs, T1w-Only segmentations can still provide estimates that hold strong correlations with the actual WMHLs, age, and performance on various cognitive/clinical scales, giving added value to datasets where T2w/PD or FLAIR are not available.

摘要

简介

液衰减反转恢复(FLAIR)和双 T2w 和质子密度(PD)磁共振图像(MRI)被认为是检测老化和阿尔茨海默病人群中脑白质高信号(WMHs)的最佳序列。然而,由于经济和时间限制,许多现有的大型多中心研究都放弃了这些序列的采集,转而采用其他 MRI 序列。

方法

在本文中,我们研究了在阿尔茨海默病和老化研究中,与使用 T1w 图像相比,是否需要使用 FLAIR 和 T2w/PD 序列来检测 WMHs。使用基于随机森林分类器的先前验证的自动工具,对 ADC、ADNI1 和 ADNI2/GO 研究中基线访视的受试者进行 FLAIR 和 T2w/PD 信息的 WMH 分割。然后,将不同脑叶获得的脑白质负荷(WMHL)与手动分割的 WMHL、彼此、年龄、认知和临床测量值相关联,以评估使用和不使用 T2w/PD 和 FLAIR 信息时的相关性强度。

结果

仅从 T1w 分割获得的 WMHL 与手动 WMHL 相关(ADNI1:r=.743,p<.001,ADNI2/GO:r=.904,p<.001),从 T1w+T2w+PD 获得的分割用于 ADNI1(r=.888,p<.001)和 T1w+FLAIR 用于 ADNI2/GO(r=.969,p<.001),年龄(ADNI1:r=.391,p<.001,ADNI2/GO:r=.466,p<.001)和 ADAS13(ADNI1:r=.227,p<.001,ADNI2/GO:r=.190,p<.001),和 NPI(ADNI1:r=.290,p<.001,ADNI2/GO:r=.144,p<.001),控制年龄。

结论

我们的结果表明,虽然 T2w/PD 和 FLAIR 提供了更准确的真实 WMHL 估计值,但仅从 T1w 分割仍然可以提供与实际 WMHL、年龄以及各种认知/临床量表上的表现具有强相关性的估计值,这为 T2w/PD 或 FLAIR 不可用的数据集提供了附加值。

相似文献

1
Validation of T1w-based segmentations of white matter hyperintensity volumes in large-scale datasets of aging.
Hum Brain Mapp. 2018 Mar;39(3):1093-1107. doi: 10.1002/hbm.23894. Epub 2017 Nov 27.
2
Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
Neuroimage. 2017 Aug 15;157:233-249. doi: 10.1016/j.neuroimage.2017.06.009. Epub 2017 Jul 3.
3
Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
Neuroimage. 2020 Jun;213:116690. doi: 10.1016/j.neuroimage.2020.116690. Epub 2020 Feb 29.
4
T1w/FLAIR ratio standardization as a myelin marker in MS patients.
Neuroimage Clin. 2022;36:103248. doi: 10.1016/j.nicl.2022.103248. Epub 2022 Oct 25.
5
White matter hyperintensity distribution differences in aging and neurodegenerative disease cohorts.
Neuroimage Clin. 2022;36:103204. doi: 10.1016/j.nicl.2022.103204. Epub 2022 Sep 16.
7
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
9
Magnetic resonance T1w/T2w ratio and voxel-based morphometry in multiple system atrophy.
Sci Rep. 2021 Nov 4;11(1):21683. doi: 10.1038/s41598-021-01222-5.
10
White matter hyperintensities and their relationship to cognition: Effects of segmentation algorithm.
Neuroimage. 2020 Feb 1;206:116327. doi: 10.1016/j.neuroimage.2019.116327. Epub 2019 Nov 1.

引用本文的文献

3
Intersecting vulnerabilities: Race, Depression, and White Matter Hyperintensity burden in Aging.
medRxiv. 2025 Jul 25:2025.07.24.25332172. doi: 10.1101/2025.07.24.25332172.
5
Vascular risk factors mediate the relationship between education and white matter hyperintensities.
medRxiv. 2025 Jun 4:2025.06.03.25328899. doi: 10.1101/2025.06.03.25328899.
6
7
Exploring the power of MRI and clinical measures in predicting AD neuropathology.
Geroscience. 2025 Apr 8. doi: 10.1007/s11357-025-01645-2.
8
Racial and ethnic differences in white matter hypointensities: The role of vascular risk factors.
Alzheimers Dement. 2025 Mar;21(3):e70105. doi: 10.1002/alz.70105.
9
Domain-specific longitudinal associations between brain volume, white matter lesions, and cognitive function changes.
Heliyon. 2025 Feb 16;11(4):e42536. doi: 10.1016/j.heliyon.2025.e42536. eCollection 2025 Feb 28.
10
Cerebrovascular markers of WMH and infarcts in ADNI: A historical perspective and future directions.
Alzheimers Dement. 2024 Dec;20(12):8953-8968. doi: 10.1002/alz.14358. Epub 2024 Nov 13.

本文引用的文献

1
Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
Neuroimage. 2017 Aug 15;157:233-249. doi: 10.1016/j.neuroimage.2017.06.009. Epub 2017 Jul 3.
2
Validation of a Regression Technique for Segmentation of White Matter Hyperintensities in Alzheimer's Disease.
IEEE Trans Med Imaging. 2017 Aug;36(8):1758-1768. doi: 10.1109/TMI.2017.2693978. Epub 2017 Apr 12.
3
Lesion location and cognitive impact of cerebral small vessel disease.
Clin Sci (Lond). 2017 Apr 25;131(8):715-728. doi: 10.1042/CS20160452.
5
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.
Neuroimage. 2016 Nov 1;141:191-205. doi: 10.1016/j.neuroimage.2016.07.018. Epub 2016 Jul 9.
7
Manual Segmentation of MS Cortical Lesions Using MRI: A Comparison of 3 MRI Reading Protocols.
AJNR Am J Neuroradiol. 2016 Sep;37(9):1623-8. doi: 10.3174/ajnr.A4799. Epub 2016 May 19.
8
White matter hyperintensities, cognitive impairment and dementia: an update.
Nat Rev Neurol. 2015 Mar;11(3):157-65. doi: 10.1038/nrneurol.2015.10. Epub 2015 Feb 17.
10
Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria.
Lancet Neurol. 2014 Jun;13(6):614-29. doi: 10.1016/S1474-4422(14)70090-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验