Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Neuroinformatics. 2020 Jun;18(3):429-449. doi: 10.1007/s12021-019-09439-6.
Accurate, automated white matter hyperintensity (WMH) segmentations are needed for large-scale studies to understand contributions of WMH to neurological diseases. We evaluated Bayesian Model Selection (BaMoS), a hierarchical fully-unsupervised model selection framework for WMH segmentation. We compared BaMoS segmentations to semi-automated segmentations, and assessed whether they predicted longitudinal cognitive change in control, early Mild Cognitive Impairment (EMCI), late Mild Cognitive Impairment (LMCI), subjective/significant memory concern (SMC) and Alzheimer's (AD) participants. Data were downloaded from the Alzheimer's disease Neuroimaging Initiative (ADNI). Magnetic resonance images from 30 control and 30 AD participants were selected to incorporate multiple scanners, and were semi-automatically segmented by 4 raters and BaMoS. Segmentations were assessed using volume correlation, Dice score, and other spatial metrics. Linear mixed-effect models were fitted to 180 control, 107 SMC, 320 EMCI, 171 LMCI and 151 AD participants separately in each group, with the outcomes being cognitive change (e.g. mini-mental state examination; MMSE), and BaMoS WMH, age, sex, race and education used as predictors. There was a high level of agreement between BaMoS' WMH segmentation volumes and a consensus of rater segmentations, with a median Dice score of 0.74 and correlation coefficient of 0.96. BaMoS WMH predicted cognitive change in: control, EMCI, and SMC groups using MMSE; LMCI using clinical dementia rating scale; and EMCI using Alzheimer's disease assessment scale-cognitive subscale (p < 0.05, all tests). BaMoS compares well to semi-automated segmentation, is robust to different WMH loads and scanners, and can generate volumes which predict decline. BaMoS can be applicable to further large-scale studies.
准确、自动化的脑白质高信号(WMH)分割对于理解 WMH 对神经退行性疾病的贡献至关重要,需要在大规模研究中进行。我们评估了贝叶斯模型选择(BaMoS),这是一种用于 WMH 分割的分层完全无监督模型选择框架。我们将 BaMoS 分割与半自动分割进行了比较,并评估了它们是否可以预测对照组、早期轻度认知障碍(EMCI)、晚期轻度认知障碍(LMCI)、主观/明显记忆障碍(SMC)和阿尔茨海默病(AD)患者的纵向认知变化。数据从阿尔茨海默病神经影像学倡议(ADNI)下载。选择了 30 名对照组和 30 名 AD 患者的磁共振图像,纳入了多个扫描仪,并由 4 名评分员和 BaMoS 进行半自动分割。使用体积相关性、Dice 评分和其他空间指标评估分割。线性混合效应模型分别在每个组的 180 名对照组、107 名 SMC、320 名 EMCI、171 名 LMCI 和 151 名 AD 患者中进行拟合,结果是认知变化(例如,简易精神状态检查;MMSE)和 BaMoS 的 WMH、年龄、性别、种族和教育作为预测因子。BaMoS 的 WMH 分割体积与评分者共识之间具有高度一致性,Dice 评分中位数为 0.74,相关系数为 0.96。BaMoS WMH 可以预测:对照组、EMCI 和 SMC 组使用 MMSE 的认知变化;LMCI 使用临床痴呆评定量表;以及 EMCI 使用阿尔茨海默病评估量表认知子量表(p < 0.05,所有检验)。BaMoS 与半自动分割相比表现良好,对不同的 WMH 负荷和扫描仪具有鲁棒性,并且可以生成预测下降的体积。BaMoS 可适用于进一步的大规模研究。