Department of Neurology.
Cellular and Molecular Biology Program.
Hum Mol Genet. 2018 Feb 1;27(3):407-420. doi: 10.1093/hmg/ddx405.
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
阐明神经发育性疾病病理生理学的一个关键挑战是确定中枢神经系统成熟过程中出现的无数异常中哪些会持续存在,从而导致长期的大脑功能障碍。由 AAA+ 蛋白 torsinA 的功能丧失突变引起的儿童发作性肌张力障碍就是这种挑战的一个例子。在中枢神经系统成熟过程中,缺乏 torsinA 的神经元会出现短暂的核膜(NE)畸形,但在成熟的 torsinA 缺失神经元中没有描述 NE 缺陷。我们发现,在出生后中枢神经系统成熟过程中,torsinA 缺失的神经元会发生定位错误和功能障碍的核孔复合物(NPC),而 NPC 的生物发生通常在后期加入 NUP358。SUN1 是一种与 NPC 生物发生有关的 torsinA 相关分子,也表现出定位异常。尽管 SUN1 和相关的核膜异常在幼年小鼠中得到解决,但 NPC 缺陷持续到成年期。这些发现支持 torsinA 功能在神经元成熟过程中对 NPC 生物发生的作用,并暗示 NPC 功能改变在肌张力障碍病理生理学中的作用。