Suppr超能文献

从进化的蓝细菌/藻类中间产物看光系统 I 超复合体光适应的分子机制。

Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate.

机构信息

Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.

Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.

出版信息

Plant Physiol. 2018 Feb;176(2):1433-1451. doi: 10.1104/pp.17.01022. Epub 2017 Nov 29.

Abstract

The monomeric photosystem I-light-harvesting antenna complex I (PSI-LHCI) supercomplex from the extremophilic red alga represents an intermediate evolutionary link between the cyanobacterial PSI reaction center and its green algal/higher plant counterpart. We show that the PSI-LHCI supercomplex is characterized by robustness in various extreme conditions. By a combination of biochemical, spectroscopic, mass spectrometry, and electron microscopy/single particle analyses, we dissected three molecular mechanisms underlying the inherent robustness of the PSI-LHCI supercomplex: (1) the accumulation of photoprotective zeaxanthin in the LHCI antenna and the PSI reaction center; (2) structural remodeling of the LHCI antenna and adjustment of the effective absorption cross section; and (3) dynamic readjustment of the stoichiometry of the two PSI-LHCI isomers and changes in the oligomeric state of the PSI-LHCI supercomplex, accompanied by dissociation of the PsaK core subunit. We show that the largest low light-treated PSI-LHCI supercomplex can bind up to eight Lhcr antenna subunits, which are organized as two rows on the PsaF/PsaJ side of the core complex. Under our experimental conditions, we found no evidence of functional coupling of the phycobilisomes with the PSI-LHCI supercomplex purified from various light conditions, suggesting that the putative association of this antenna with the PSI supercomplex is absent or may be lost during the purification procedure.

摘要

单体光系统 I-捕光天线复合物 I(PSI-LHCI)超复合物来自极端嗜热红藻,代表了蓝细菌 PSI 反应中心与其绿藻/高等植物对应物之间的中间进化联系。我们表明,PSI-LHCI 超复合物在各种极端条件下具有稳健性。通过生化、光谱、质谱和电子显微镜/单颗粒分析的组合,我们剖析了三种分子机制,这些机制是 PSI-LHCI 超复合物固有稳健性的基础:(1)LHCI 天线和 PSI 反应中心中积累的光保护玉米黄质;(2)LHCI 天线的结构重塑和有效吸收截面的调整;(3)两种 PSI-LHCI 异构体的化学计量比的动态调整和 PSI-LHCI 超复合物的寡聚态的变化,伴随着 PsaK 核心亚基的解离。我们表明,最大的低光照处理 PSI-LHCI 超复合物可以结合多达八个 Lhcr 天线亚基,这些亚基组织在核心复合物的 PsaF/PsaJ 侧的两排。在我们的实验条件下,我们没有发现从各种光照条件下纯化的 PSI-LHCI 超复合物与藻胆体之间存在功能偶联的证据,这表明这种天线与 PSI 超复合物的假定关联不存在,或者可能在纯化过程中丢失。

相似文献

1
Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate.
Plant Physiol. 2018 Feb;176(2):1433-1451. doi: 10.1104/pp.17.01022. Epub 2017 Nov 29.
2
Regulation of photosystem I-light-harvesting complex I from a red alga Cyanidioschyzon merolae in response to light intensities.
Photosynth Res. 2020 Dec;146(1-3):287-297. doi: 10.1007/s11120-020-00778-z. Epub 2020 Aug 6.
3
Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae.
Photosynth Res. 2017 Sep;133(1-3):201-214. doi: 10.1007/s11120-017-0384-9. Epub 2017 Apr 12.
4
Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in .
J Biol Chem. 2019 Mar 22;294(12):4304-4314. doi: 10.1074/jbc.RA118.006536. Epub 2019 Jan 22.
5
Remodeling of excitation energy transfer in extremophilic red algal PSI-LHCI complex during light adaptation.
Biochim Biophys Acta Bioenerg. 2020 Jan 1;1861(1):148093. doi: 10.1016/j.bbabio.2019.148093. Epub 2019 Oct 25.
6
On the nature of uncoupled chlorophylls in the extremophilic photosystem I-light harvesting I supercomplex.
Biochim Biophys Acta Bioenerg. 2020 Feb 1;1861(2):148136. doi: 10.1016/j.bbabio.2019.148136. Epub 2019 Dec 9.
8
Configuration of Ten Light-Harvesting Chlorophyll / Complex I Subunits in Photosystem I.
Plant Physiol. 2018 Oct;178(2):583-595. doi: 10.1104/pp.18.00749. Epub 2018 Aug 20.
9
Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4423-4428. doi: 10.1073/pnas.1722482115. Epub 2018 Apr 9.
10
Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex.
Nat Plants. 2019 Mar;5(3):273-281. doi: 10.1038/s41477-019-0380-5. Epub 2019 Mar 8.

引用本文的文献

5
Ascorbate peroxidase plays an important role in photoacclimation in the extremophilic red alga .
Front Plant Sci. 2023 Jun 2;14:1176985. doi: 10.3389/fpls.2023.1176985. eCollection 2023.
6
Biochemical and spectroscopic characterization of PSI-LHCI from the red alga Cyanidium caldarium.
Photosynth Res. 2023 Jun;156(3):315-323. doi: 10.1007/s11120-023-00999-y. Epub 2023 Feb 13.
8
Spectral Dependence of the Energy Transfer from Photosynthetic Complexes to Monolayer Graphene.
Int J Mol Sci. 2022 Mar 23;23(7):3493. doi: 10.3390/ijms23073493.
10
Competition between intra-protein charge recombination and electron transfer outside photosystem I complexes used for photovoltaic applications.
Photochem Photobiol Sci. 2022 Mar;21(3):319-336. doi: 10.1007/s43630-022-00170-x. Epub 2022 Feb 4.

本文引用的文献

2
Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant .
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4828-4832. doi: 10.1073/pnas.1621051114. Epub 2017 Apr 17.
3
Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae.
Photosynth Res. 2017 Sep;133(1-3):201-214. doi: 10.1007/s11120-017-0384-9. Epub 2017 Apr 12.
4
Temperature-Induced Remodeling of the Photosynthetic Machinery Tunes Photosynthesis in the Thermophilic Alga .
Plant Physiol. 2017 May;174(1):35-46. doi: 10.1104/pp.17.00110. Epub 2017 Mar 7.
5
Structure of the plant photosystem I supercomplex at 2.6 Å resolution.
Nat Plants. 2017 Mar 1;3:17014. doi: 10.1038/nplants.2017.14.
6
Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II.
Photosynth Res. 2017 Sep;133(1-3):235-243. doi: 10.1007/s11120-017-0345-3. Epub 2017 Feb 9.
7
A new procedure for fast soft staining of BN-PAGEs on photosynthetic complexes.
Electrophoresis. 2017 Feb;38(3-4):441-446. doi: 10.1002/elps.201600389. Epub 2016 Nov 22.
8
Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga.
J Biol Chem. 2016 Mar 11;291(11):5676-5687. doi: 10.1074/jbc.M115.711689. Epub 2016 Jan 12.
9
A quest for the artificial leaf.
Int J Biochem Cell Biol. 2015 Sep;66:37-44. doi: 10.1016/j.biocel.2015.07.005. Epub 2015 Jul 14.
10
The structure of plant photosystem I super-complex at 2.8 Å resolution.
Elife. 2015 Jun 15;4:e07433. doi: 10.7554/eLife.07433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验