Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland.
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul Okólna 2, 50-422 Wrocław, Poland.
Int J Mol Sci. 2022 Mar 10;23(6):2976. doi: 10.3390/ijms23062976.
One of the crucial challenges for science is the development of alternative pollution-free and renewable energy sources. One of the most promising inexhaustible sources of energy is solar energy, and in this field, solar fuel cells employing naturally evolved solar energy converting biocomplexes-photosynthetic reaction centers, such as photosystem I-are of growing interest due to their highly efficient photo-powered operation, resulting in the production of chemical potential, enabling synthesis of simple fuels. However, application of the biomolecules in such a context is strongly limited by the progressing photobleaching thereof during illumination. In the current work, we investigated the excitation wavelength dependence of the photosystem I photodamage dynamics. Moreover, we aimed to correlate the PSI-LHCI photostability dependence on the excitation wavelength with significant (ca. 50-fold) plasmonic enhancement of fluorescence due to the utilization of planar metallic nanostructure as a substrate. Finally, we present a rational approach for the significant improvement in the photostability of PSI in anoxic conditions. We find that photobleaching rates for 5 min long blue excitation are reduced from nearly 100% to 20% and 70% for substrates of bare glass and plasmonically active substrate, respectively. Our results pave promising ways for optimization of the biomimetic solar fuel cells due to synergy of the plasmon-induced absorption enhancement together with improved photostability of the molecular machinery of the solar-to-fuel conversion.
科学面临的一个关键挑战是开发替代无污染和可再生能源。太阳能是最有前途的无限能源之一,在这一领域,利用自然进化的太阳能转化生物复合物——光合作用反应中心(如光系统 I)的太阳能燃料电池由于其高效的光电操作而引起了越来越多的兴趣,从而产生化学势能,能够合成简单燃料。然而,由于在光照过程中生物分子逐渐光漂白,它们在这种情况下的应用受到了强烈限制。在当前的工作中,我们研究了光系统 I 光损伤动力学的激发波长依赖性。此外,我们旨在将 PSI-LHCI 光稳定性与激发波长的依赖性与由于利用平面金属纳米结构作为基底而导致的显著(约 50 倍)荧光等离子体增强相关联。最后,我们提出了一种在缺氧条件下显著提高 PSI 光稳定性的合理方法。我们发现,对于长达 5 分钟的蓝色激发,在无基底和等离子体活性基底上的光漂白率分别从近 100%降低到 20%和 70%。我们的结果为优化仿生太阳能燃料电池铺平了道路,因为等离子体诱导的吸收增强与太阳能到燃料转化的分子机械的光稳定性提高相结合具有协同作用。