a Department of Biomedicine Design , Pfizer Inc , Cambridge , MA , United States of America.
b Department of Biomedicine Design , Pfizer Inc , Andover , MA , United States of America.
MAbs. 2018 Jan;10(1):62-70. doi: 10.1080/19420862.2017.1398873. Epub 2017 Nov 30.
Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.
组织损伤后发现成纤维细胞生长因子诱导 14 型受体(Fn14)上调,这促使人们研究针对 Fn14 受体的生物治疗方法,以治疗慢性肾脏病等疾病。在单克隆抗体(mAb)治疗药物的开发中,越来越倾向于使用生物标志物并结合机制药代动力学/药效动力学(PK/PD)模型,以便在早期发现阶段做出决策。为了指导设计具有优化特性的抗体的临床前工作,我们开发了一个用于人体应用的作用部位(SoA)PK/PD 机制模型。该模型结合了实验生物标志物,包括人血浆中可溶性 Fn14(sFn14)浓度和人肾组织中膜 Fn14(mFn14)浓度,以及人 sFn14 的周转率。使用稳定同位素标记的氨基酸和质谱的脉冲追踪研究表明,健康志愿者的 sFn14 半衰期约为 5 小时。血浆中 sFn14 的生物标志物(浓度、周转率)表明,设计具有所需特性的 Fn14 抗体存在重大障碍。从人体 PK/PD 模型得出的预测剂量(90%靶标覆盖率>1mg/kg/周)表明,在某些情况下,可能需要高频率的给药。PK/PD 模型提示抗 Fn14 mAb 的靶标覆盖率与抗体亲和力之间存在独特的钟形关系,这可用于指导抗体工程实现优化的亲和力。这项研究强调了潜在的应用,包括在早期靶标验证期间评估 PK/PD 风险、预测人体剂量和优化候选药物。