Tiwari A, Luo H, Chen X, Singh P, Bhattacharya I, Jasper P, Tolsma J E, Jones H M, Zutshi A, Abraham A K
Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA.
RES Group, Needham, Massachusetts, USA.
CPT Pharmacometrics Syst Pharmacol. 2016 Oct;5(10):565-574. doi: 10.1002/psp4.12126. Epub 2016 Oct 22.
Understanding pharmacological target coverage is fundamental in drug discovery and development as it helps establish a sequence of research activities, from laboratory objectives to clinical doses. To this end, we evaluated the impact of tissue target concentration data on the level of confidence in tissue coverage predictions using a site of action (SoA) model for antibodies. By fitting the model to increasing amounts of synthetic tissue data and comparing the uncertainty in SoA coverage predictions, we confirmed that, in general, uncertainty decreases with longitudinal tissue data. Furthermore, a global sensitivity analysis showed that coverage is sensitive to experimentally identifiable parameters, such as baseline target concentration in plasma and target turnover half-life and fixing them reduces uncertainty in coverage predictions. Overall, our computational analysis indicates that measurement of baseline tissue target concentration reduces the uncertainty in coverage predictions and identifies target-related parameters that greatly impact the confidence in coverage predictions.
了解药理学靶点覆盖情况在药物发现和开发中至关重要,因为它有助于确定从实验室目标到临床剂量的一系列研究活动。为此,我们使用抗体的作用位点(SoA)模型评估了组织靶点浓度数据对组织覆盖预测置信度水平的影响。通过将模型拟合到越来越多的合成组织数据,并比较SoA覆盖预测中的不确定性,我们证实,一般来说,不确定性会随着纵向组织数据而降低。此外,全局敏感性分析表明,覆盖情况对实验可识别的参数敏感,如血浆中的基线靶点浓度和靶点周转半衰期,固定这些参数可降低覆盖预测中的不确定性。总体而言,我们的计算分析表明,基线组织靶点浓度的测量降低了覆盖预测中的不确定性,并确定了对覆盖预测置信度有重大影响的靶点相关参数。