Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Science. 2017 Dec 15;358(6369):1434-1439. doi: 10.1126/science.aap7675. Epub 2017 Nov 30.
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn.
作为机械互锁分子的高分子版本,机械互锁聚合物是创建复杂分子机器和智能软材料的有前途的候选者。[n] 型轮烷聚合物,其中分子链仅由互锁大环组成,含有最高浓度的拓扑键之一。我们在此报告了一种通过合理设计的金属超分子聚合物的有效闭环反应以高产率(~75%)合成这种独特聚合物结构的方法。对分级样品进行光散射、质谱和核磁共振表征,支持将高分子量产物(数均摩尔质量约 21.4 千克/摩尔)分配给一系列线性聚[7-26]轮烷、支化聚[13-130]轮烷和环状聚[4-7]轮烷的混合物。Zn 配位后观察到溶液中流体力学半径(hydrodynamic radius)增加和块状材料中玻璃化转变温度(glass transition temperature)升高。