Suppr超能文献

利用反向传播人工神经网络预测熏肠中的苯并[a]芘含量。

Prediction of benzo[a]pyrene content of smoked sausage using back-propagation artificial neural network.

机构信息

School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China.

Anhui Grain & Oil Quality Inspection Station, China National Supervision and Examination Center For Foodstuff Quality, Hefei, China.

出版信息

J Sci Food Agric. 2018 Jun;98(8):3022-3030. doi: 10.1002/jsfa.8801. Epub 2018 Feb 8.

Abstract

BACKGROUND

Benzo[a]pyrene (BaP), a potent mutagen and carcinogen, is reported to be present in processed meat products and, in particular, in smoked meat. However, few methods exist for predictive determination of the BaP content of smoked meats such as sausage. In this study, an artificial neural network (ANN) model based on the back-propagation (BP) algorithm was used to predict the BaP content of smoked sausage.

RESULTS

The results showed that the BP network based on the Levenberg-Marquardt algorithm was the best suited for creating a nonlinear map between the input and output parameters. The optimal network structure was 3-7-1 and the learning rate was 0.6. This BP-ANN model allowed for accurate predictions, with the correlation coefficients (R) for the experimentally determined training, validation, test and global data sets being 0.94, 0.96, 0.95 and 0.95 respectively. The validation performance was 0.013, suggesting that the proposed BP-ANN may be used to predictively detect the BaP content of smoked meat products.

CONCLUSION

An effective predictive model was constructed for estimation of the BaP content of smoked sausage using ANN modeling techniques, which shows potential to predict the BaP content in smoked sausage. © 2017 Society of Chemical Industry.

摘要

背景

苯并[a]芘(BaP)是一种强诱变剂和致癌物,据报道存在于加工肉类产品中,特别是在熏制肉类中。然而,目前很少有方法可以预测熏制肉类(如香肠)中的 BaP 含量。在本研究中,使用基于反向传播(BP)算法的人工神经网络(ANN)模型来预测熏制香肠中的 BaP 含量。

结果

结果表明,基于 Levenberg-Marquardt 算法的 BP 网络最适合创建输入和输出参数之间的非线性映射。最佳网络结构为 3-7-1,学习率为 0.6。该 BP-ANN 模型能够进行准确的预测,实验确定的训练、验证、测试和全局数据集的相关系数(R)分别为 0.94、0.96、0.95 和 0.95。验证性能为 0.013,表明所提出的 BP-ANN 可用于预测性检测熏制肉类产品中的 BaP 含量。

结论

使用 ANN 建模技术构建了一种用于估计熏制香肠中 BaP 含量的有效预测模型,该模型显示出在预测熏制香肠中的 BaP 含量方面的潜力。 © 2017 化学工业协会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验