Haas M, Harrison J H
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510.
Am J Physiol. 1989 Feb;256(2 Pt 1):C265-72. doi: 10.1152/ajpcell.1989.256.2.C265.
Dapsone, a sulfone compound used in the treatment of leprosy and, more recently, Pneumocystis carinii pneumonia, produces as a major side effect a hemolytic anemia. This anemia is characterized by oxidation of hemoglobin to methemoglobin and increased splenic uptake of red blood cells. Using a rat model, Grossman and Jollow (J. Pharmacol. Exp. Ther. 244: 118-125, 1988) found that dapsone hydroxylamine (DDS-NOH), a dapsone metabolite, is responsible for its hemolytic effect in vivo. DDS-NOH also promotes hemoglobin binding to SH groups on rat red cell membrane proteins (Budinsky et al., FASEB J. 2: A801, 1988). Since the binding of hemoglobin and other reagents (e.g., N-ethylmaleimide) to membrane SH groups has been associated with increased K transport in red blood cells, we examined the effect of DDS-NOH on K efflux from rat red blood cells in vitro. Cells shrink when exposed to DDS-NOH (100 microM) in media with plasma-like ionic composition. This shrinkage is prevented if extracellular K is raised to 110 mM or if intra- and extracellular Cl are replaced by methylsulfate (MeSO4), suggesting involvement of a K-Cl cotransport pathway. Indeed, 100 microM DDS-NOH produces a 4- to 5-fold increase in K efflux in cells containing Cl but less than a 2-fold increase in cells containing MeSO4. This stimulatory effect is specific for K; Na efflux is slightly inhibited by 100 microM DDS-NOH. The concentrations of DDS-NOH required for half-maximal stimulation of Cl-dependent K efflux (53 microM) is similar to its half-maximal hemolytic concentration in rats (approximately 100 microM). Furthermore, the stimulation of Cl-dependent K efflux by DDS-NOH is greater than 80% reversed by subsequent treatment of the cells with dithiothreitol, suggesting involvement of SH groups. Our results indicate that DDS-NOH exposure stimulates an apparent K-Cl cotransport in rat red blood cells, resulting in cell shrinkage under physiological ionic conditions. Since shrinkage of red blood cells renders them less deformable (Mohandas et al., J. Clin. Invest. 66: 563-573, 1980), this suggests a pathophysiological mechanism whereby DDS-NOH exposure in vivo could promote increased splenic uptake of red blood cells and hemolytic anemia.
氨苯砜是一种砜类化合物,用于治疗麻风病,最近也用于治疗卡氏肺孢子虫肺炎,其主要副作用是引起溶血性贫血。这种贫血的特征是血红蛋白氧化为高铁血红蛋白以及脾脏对红细胞的摄取增加。格罗斯曼和乔洛(《药理学与实验治疗学杂志》244: 118 - 125, 1988)利用大鼠模型发现,氨苯砜的代谢产物氨苯砜羟胺(DDS - NOH)在体内对其溶血作用负责。DDS - NOH还能促进血红蛋白与大鼠红细胞膜蛋白上的SH基团结合(布迪斯基等人,《美国实验生物学会联合会杂志》2: A801, 1988)。由于血红蛋白和其他试剂(如N - 乙基马来酰亚胺)与膜SH基团的结合与红细胞中钾转运增加有关,我们在体外研究了DDS - NOH对大鼠红细胞钾外流的影响。当在具有类似血浆离子组成的培养基中暴露于DDS - NOH(100微摩尔)时,细胞会收缩。如果将细胞外钾浓度提高到110毫摩尔或用甲硫酸盐(MeSO4)取代细胞内和细胞外的氯,这种收缩就会被阻止,这表明钾 - 氯共转运途径参与其中。实际上,100微摩尔的DDS - NOH使含氯细胞的钾外流增加4至5倍,但使含MeSO4的细胞钾外流增加不到2倍。这种刺激作用对钾具有特异性;100微摩尔的DDS - NOH会轻微抑制钠外流。使氯依赖性钾外流达到半最大刺激所需的DDS - NOH浓度(53微摩尔)与其在大鼠体内的半最大溶血浓度(约100微摩尔)相似。此外,用二硫苏糖醇对细胞进行后续处理后,DDS - NOH对氯依赖性钾外流的刺激作用有超过80%被逆转,这表明SH基团参与其中。我们的结果表明,暴露于DDS - NOH会刺激大鼠红细胞中明显的钾 - 氯共转运,在生理离子条件下导致细胞收缩。由于红细胞收缩会使其变形性降低(莫汉达斯等人,《临床研究杂志》66: 563 - 573, 1980),这提示了一种病理生理机制,即体内暴露于DDS - NOH可促进脾脏对红细胞摄取增加以及溶血性贫血。