Suppr超能文献

在线社交网络的级联崩溃。

Cascading collapse of online social networks.

机构信息

Center for Network Science, Central European University, Nádor u. 9, H-1051, Budapest, Hungary.

Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary.

出版信息

Sci Rep. 2017 Dec 1;7(1):16743. doi: 10.1038/s41598-017-17135-1.

Abstract

Online social networks have increasing influence on our society, they may play decisive roles in politics and can be crucial for the fate of companies. Such services compete with each other and some may even break down rapidly. Using social network datasets we show the main factors leading to such a dramatic collapse. At early stage mostly the loosely bound users disappear, later collective effects play the main role leading to cascading failures. We present a theory based on a generalised threshold model to explain the findings and show how the collapse time can be estimated in advance using the dynamics of the churning users. Our results shed light to possible mechanisms of instabilities in other competing social processes.

摘要

在线社交网络对我们的社会产生了越来越大的影响,它们可能在政治中发挥决定性作用,对公司的命运也至关重要。此类服务相互竞争,有些甚至可能迅速崩溃。我们使用社交网络数据集展示了导致这种戏剧性崩溃的主要因素。在早期,主要是松散绑定的用户消失,后来集体效应发挥了主要作用,导致级联故障。我们提出了一个基于广义阈值模型的理论来解释这些发现,并展示了如何使用 churn 用户的动态提前估计崩溃时间。我们的研究结果揭示了其他竞争社会过程中不稳定性的可能机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f7/5711899/20de51d98c67/41598_2017_17135_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验