Center for Network Science, Central European University, Nádor u. 9, H-1051, Budapest, Hungary.
Department of Theoretical Physics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary.
Sci Rep. 2017 Dec 1;7(1):16743. doi: 10.1038/s41598-017-17135-1.
Online social networks have increasing influence on our society, they may play decisive roles in politics and can be crucial for the fate of companies. Such services compete with each other and some may even break down rapidly. Using social network datasets we show the main factors leading to such a dramatic collapse. At early stage mostly the loosely bound users disappear, later collective effects play the main role leading to cascading failures. We present a theory based on a generalised threshold model to explain the findings and show how the collapse time can be estimated in advance using the dynamics of the churning users. Our results shed light to possible mechanisms of instabilities in other competing social processes.
在线社交网络对我们的社会产生了越来越大的影响,它们可能在政治中发挥决定性作用,对公司的命运也至关重要。此类服务相互竞争,有些甚至可能迅速崩溃。我们使用社交网络数据集展示了导致这种戏剧性崩溃的主要因素。在早期,主要是松散绑定的用户消失,后来集体效应发挥了主要作用,导致级联故障。我们提出了一个基于广义阈值模型的理论来解释这些发现,并展示了如何使用 churn 用户的动态提前估计崩溃时间。我们的研究结果揭示了其他竞争社会过程中不稳定性的可能机制。