Suppr超能文献

信息操纵和不民主的决策。

Information gerrymandering and undemocratic decisions.

机构信息

Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.

Sloan School of Management, MIT, Cambridge, MA, USA.

出版信息

Nature. 2019 Sep;573(7772):117-121. doi: 10.1038/s41586-019-1507-6. Epub 2019 Sep 4.

Abstract

People must integrate disparate sources of information when making decisions, especially in social contexts. But information does not always flow freely. It can be constrained by social networks and distorted by zealots and automated bots. Here we develop a voter game as a model system to study information flow in collective decisions. Players are assigned to competing groups (parties) and placed on an 'influence network' that determines whose voting intentions each player can observe. Players are incentivized to vote according to partisan interest, but also to coordinate their vote with the entire group. Our mathematical analysis uncovers a phenomenon that we call information gerrymandering: the structure of the influence network can sway the vote outcome towards one party, even when both parties have equal sizes and each player has the same influence. A small number of zealots, when strategically placed on the influence network, can also induce information gerrymandering and thereby bias vote outcomes. We confirm the predicted effects of information gerrymandering in social network experiments with n = 2,520 human subjects. Furthermore, we identify extensive information gerrymandering in real-world influence networks, including online political discussions leading up to the US federal elections, and in historical patterns of bill co-sponsorship in the US Congress and European legislatures. Our analysis provides an account of the vulnerabilities of collective decision-making to systematic distortion by restricted information flow. Our analysis also highlights a group-level social dilemma: information gerrymandering can enable one party to sway decisions in its favour, but when multiple parties engage in gerrymandering the group loses its ability to reach consensus and remains trapped in deadlock.

摘要

人们在做决策时必须整合来自不同来源的信息,尤其是在社会环境中。但信息并不总是自由流动的。它可能会受到社交网络的限制,并被狂热分子和自动化机器人扭曲。在这里,我们开发了一个选民游戏作为模型系统来研究集体决策中的信息流。玩家被分配到相互竞争的群体(党派)中,并被放置在一个“影响网络”上,该网络决定每个玩家可以观察到谁的投票意向。玩家被激励根据党派利益投票,但也要与整个群体协调投票。我们的数学分析揭示了一种我们称之为信息划分的现象:影响网络的结构可以使投票结果偏向于一个政党,即使两个政党的规模相等,每个玩家的影响力也相同。少量的狂热分子,如果在影响网络上有策略地安置,也可以引发信息划分,并因此偏向投票结果。我们在包含 2520 名人类受试者的社交网络实验中证实了信息划分的预测效应。此外,我们在现实世界的影响网络中发现了广泛的信息划分,包括美国联邦选举前的在线政治讨论,以及美国国会和欧洲立法机构的法案共同发起的历史模式。我们的分析提供了一个对集体决策受到信息流动限制的系统性扭曲的脆弱性的解释。我们的分析还突出了一个群体层面的社会困境:信息划分可以使一方能够影响其有利的决策,但当多个党派进行划分时,群体就失去了达成共识的能力,并且仍然陷入僵局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验