Li Zeng, Wang Zhen, Xu Shun, Liang Wenwei, Fan Weimin
Cell Physiol Biochem. 2017;44(4):1578-1590. doi: 10.1159/000485652. Epub 2017 Dec 4.
BACKGROUND/AIMS: In recent years, a variety of studies have been performed to investigate the cellular responses of periodic mechanical stress. In our previous studies, we found that periodic mechanical stress can promote proliferation and matrix synthesis through the integrin beta 1-mediated ERK1/2 pathway, and we used proteomic analysis to detect quantitative changes in chondrocytes under periodic mechanical stress. Despite these results, the effects and mechanisms of periodic mechanical stress are still not fully understood, so in this study we extended our study using phosphoproteomic techniques.
We used phosphoproteomic techniques to detect phosphorylation changes in chondrocytes under periodic mechanical stress and combined the results with the quantitative proteomic data to further explore the underlying mechanisms. Data were obtained by phosphorylation inhibition, quantitative real-time PCR (qPCR) analysis, western blot analysis and immunofluorescence assay.
From phosphoproteomic analysis, a total of 1073 phosphorylated proteins and 2054 phosphopeptides were identified. The number of significant differentially expressed proteins and phosphopeptides was 97 and 108, respectively (ratio >1.20 or <0.83 at p<0.05). Periodic mechanical stress increased glycogen synthase kinase 3-beta (GSK3-beta) phosphorylation at Y216, promoted the phosphorylation of beta-catenin, decreased beta-catenin levels and suppressed the expression of type I collagen. In contrast, inhibition of GSK3-beta by TWS119, which specifically inhibits the phosphorylation of Y216, suppressed the phosphorylation of beta-catenin, which resulted in the accumulation of beta-catenin and an increase in the expression of type I collagen.
We successfully constructed differentially expressed phosphoproteomic profiles of rat chondrocytes under periodic mechanical stress, and discovered a potential new therapeutic benefit in which periodic mechanical stress suppressed the formation of type I collagen in the matrix of chondrocytes via phosphorylation of GSK3-beta and beta-catenin.
背景/目的:近年来,已开展了多项研究来探究周期性机械应力的细胞反应。在我们之前的研究中,我们发现周期性机械应力可通过整合素β1介导的ERK1/2信号通路促进细胞增殖和基质合成,并且我们使用蛋白质组学分析来检测周期性机械应力作用下软骨细胞的定量变化。尽管有这些结果,但周期性机械应力的作用及机制仍未完全明确,因此在本研究中我们运用磷酸化蛋白质组学技术拓展了研究。
我们使用磷酸化蛋白质组学技术检测周期性机械应力作用下软骨细胞的磷酸化变化,并将结果与定量蛋白质组学数据相结合以进一步探究潜在机制。通过磷酸化抑制、定量实时聚合酶链反应(qPCR)分析、蛋白质免疫印迹分析和免疫荧光测定来获取数据。
通过磷酸化蛋白质组学分析,共鉴定出1073种磷酸化蛋白和2054种磷酸肽。显著差异表达的蛋白质和磷酸肽数量分别为97种和108种(p<0.05时,比值>1.20或<0.83)。周期性机械应力增加了糖原合酶激酶3β(GSK3-β)在Y216位点的磷酸化,促进了β-连环蛋白的磷酸化,降低了β-连环蛋白水平,并抑制了I型胶原蛋白的表达。相反,特异性抑制Y216位点磷酸化的TWS119对GSK3-β的抑制作用抑制了β-连环蛋白的磷酸化,导致β-连环蛋白积累并使I型胶原蛋白表达增加。
我们成功构建了大鼠软骨细胞在周期性机械应力作用下的差异表达磷酸化蛋白质组图谱,并发现了一个潜在的新治疗益处,即周期性机械应力通过GSK3-β和β-连环蛋白的磷酸化抑制软骨细胞基质中I型胶原蛋白的形成。