Clinic of Dermatology, Venereology and Allergology, Johann Wolfgang Goethe University, Frankfurt/Main, Germany.
Clinic of Dermatology, Venereology and Allergology, Johann Wolfgang Goethe University, Frankfurt/Main, Germany.
J Dermatol Sci. 2018 Mar;89(3):241-247. doi: 10.1016/j.jdermsci.2017.11.011. Epub 2017 Dec 2.
Mechanical stress is an ubiquitous challenge of human cells with fundamental impact on cell physiology. Previous studies have shown that stretching promotes signalling cascades involved in proliferation and tissue enlargement.
The present study is dedicated to learn more about cellular structures contributing to perception and signal transmission of cell stretch. In particular, we hypothesized that desmosmal contacts and the adjacent keratin filament build an intercellular matrix providing information about the mechanical load.
Epidermal cells with different keratin equipment were seeded on flexible silicon dishes and stretched. As read out parameter the activation of PKB/Akt and p44/42 was monitored by Western blotting. Likewise desomosomal contacts were manipulated by depletion or addition of calcium. Moreover, desmoglein 3 and desmocollin 3 were blocked by either specific antibodies or siRNA.
It was found that the omission of calcium from the medium, a necessary cofactor for desmosomal cadherins, inhibited stretch mediated activation of PKB/Akt and p44/42. The relevance of desmosomes in this context was further substantiated by experiments using a desmoglein 3 blocking antibody (AK23) and siRNA against desmocollin 3. Moreover, disruption of the keratin filament by sodium orthovanadate also abrogates PKB/Akt and p44/42 activation in response to stretch. Likewise, KEB-7 keratinocytes harbouring a mutation in the keratin 14 gene and genetically modified keratinocytes devoid of any keratin show an altered signalling after stretch indicating the relevance of the keratin filament in this context.
Besides their important role in cell architecture our results identify desmosomes and keratins as mechanosensing structures.
机械应力是人体细胞普遍面临的挑战,对细胞生理有根本影响。先前的研究表明,拉伸可促进增殖和组织增大相关的信号级联反应。
本研究旨在深入了解参与细胞拉伸感知和信号转导的细胞结构。特别是,我们假设桥粒连接和相邻的角蛋白丝形成了一个细胞间基质,提供了关于机械负荷的信息。
将具有不同角蛋白装备的表皮细胞接种在柔性硅盘上并进行拉伸。通过 Western blot 监测 PKB/Akt 和 p44/42 的激活作为读取参数。同样,通过钙耗竭或添加来操纵桥粒连接。此外,通过特异性抗体或 siRNA 阻断桥粒斑蛋白 3 和桥粒斑蛋白 3。
发现从中性缓冲液中去除钙(桥粒连接钙依赖性粘连蛋白的必要辅助因子)可抑制拉伸介导的 PKB/Akt 和 p44/42 的激活。在这方面,使用桥粒斑蛋白 3 阻断抗体(AK23)和针对桥粒斑蛋白 3 的 siRNA 的实验进一步证实了桥粒的相关性。此外,通过正钒酸钠破坏角蛋白丝也可消除拉伸对 PKB/Akt 和 p44/42 激活的作用。同样,携带角蛋白 14 基因突变的 KEB-7 角质形成细胞和缺乏任何角蛋白的基因修饰角质形成细胞在拉伸后表现出改变的信号转导,表明角蛋白丝在这种情况下的相关性。
除了在细胞结构中的重要作用外,我们的结果还将桥粒和角蛋白确定为机械感受结构。