Dong Qi, Elliott Michael R, Raghunathan Trivellore E
Google, Inc., 1R4A, Quad 5, Google Inc, 399 N. Whisman Road, Mountain View, CA 94043.
Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109 and Survey Methodology Program, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48106.
Surv Methodol. 2014 Dec;40(2):347-354. Epub 2014 Dec 19.
This manuscript describes the use of multiple imputation to combine information from multiple surveys of the same underlying population. We use a newly developed method to generate synthetic populations nonparametrically using a finite population Bayesian bootstrap that automatically accounting for complex sample designs. We then analyze each synthetic population with standard complete-data software for simple random samples and obtain valid inference by combining the point and variance estimates using extensions of existing combining rules for synthetic data. We illustrate the approach by combining data from the 2006 National Health Interview Survey (NHIS) and the 2006 Medical Expenditure Panel Survey (MEPS).
本手稿描述了使用多重填补法来整合来自同一潜在人群的多项调查的信息。我们使用一种新开发的方法,通过有限总体贝叶斯自助法非参数地生成合成总体,该方法会自动考虑复杂的样本设计。然后,我们使用针对简单随机样本的标准完全数据软件对每个合成总体进行分析,并通过使用现有合成数据合并规则的扩展来合并点估计和方差估计,从而获得有效的推断。我们通过合并2006年国家健康访谈调查(NHIS)和2006年医疗支出小组调查(MEPS)的数据来说明该方法。