CAS, A Division of the American Chemical Society, Columbus, Ohio 43210, United States.
ACS International India Pvt. Ltd., Pune 411044, India.
J Chem Inf Model. 2024 Oct 14;64(19):7488-7502. doi: 10.1021/acs.jcim.4c00864. Epub 2024 Sep 17.
TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein kinase. It plays a crucial role in various cellular processes, including the innate immune response to viruses, cell proliferation, apoptosis, autophagy, and antitumor immunity. Dysregulation of TBK1 activity can lead to autoimmune diseases, neurodegenerative disorders, and cancer. Due to its central role in these critical pathways, TBK1 is a significant focus of research for therapeutic drug development. In this paper, we explore data from the CAS Content Collection regarding TBK1 and its implication in a large assortment of diseases and disorders. With the demand for developing efficient TBK1 inhibitors being outlined, we focus on utilizing a machine learning approach for developing predictive models for TBK1 inhibition, derived from the fragment-functional analysis descriptors. Using the extensive CAS Content Collection, we assembled a training set of TBK1 inhibitors with experimentally measured IC50 values. We explored several machine learning techniques combined with various molecular descriptors to derive and select the best TBK1 inhibitor QSAR models. Certain significant structural alerts that potentially contribute to inhibition of TBK1 are outlined and discussed. The merit of the article stems from identifying the most adequate TBK1 QSAR models and subsequent successful development of advanced positive training data to facilitate and enhance drug discovery for an important therapeutic target such as TBK1 inhibitors, based on an extensive, wide-ranging set of scientific information provided by the CAS Content Collection.
TBK1,也称为 TANK 结合激酶 1,是一种酶,作为丝氨酸/苏氨酸蛋白激酶发挥作用。它在多种细胞过程中发挥着关键作用,包括对病毒的先天免疫反应、细胞增殖、细胞凋亡、自噬和抗肿瘤免疫。TBK1 活性的失调可能导致自身免疫性疾病、神经退行性疾病和癌症。由于其在这些关键途径中的核心作用,TBK1 是治疗药物开发的重要研究焦点。在本文中,我们探讨了来自 CAS 内容集的关于 TBK1 及其在多种疾病和病症中的意义的数据。鉴于对开发高效 TBK1 抑制剂的需求,我们专注于利用机器学习方法为 TBK1 抑制开发预测模型,这些模型源自片段功能分析描述符。利用广泛的 CAS 内容集,我们组装了一个具有实验测量的 IC50 值的 TBK1 抑制剂训练集。我们探索了几种机器学习技术与各种分子描述符相结合,以得出和选择最佳的 TBK1 抑制剂 QSAR 模型。概述并讨论了可能有助于抑制 TBK1 的某些重要结构警报。本文的优点在于确定了最合适的 TBK1 QSAR 模型,并随后成功开发了先进的阳性训练数据,以基于 CAS 内容集提供的广泛而广泛的科学信息,促进和增强对 TBK1 抑制剂等重要治疗靶标的药物发现。