Suppr超能文献

对赫斯科维奇内踝骨折分类法的评估。

An evaluation of the Herscovici classification for fractures of the medial malleolus.

作者信息

Aitken Stuart A, Johnston Ian, Jennings Angus C, Chua Ivan T H, Buckley Richard E

机构信息

The Department of Orthopaedic Trauma, Foothills Medical Centre, Calgary, Alberta, Canada.

The Department of Orthopaedic Trauma, Foothills Medical Centre, Calgary, Alberta, Canada.

出版信息

Foot Ankle Surg. 2017 Dec;23(4):317-320. doi: 10.1016/j.fas.2016.10.003. Epub 2016 Nov 4.

Abstract

BACKGROUND

Despite its use in the literature, the application of the Herscovici classification system for medial malleolus fractures has not been evaluated.

METHODS

We aimed to determine the reliability and accuracy of the Herscovici classification. The blinded radiographs of 130 patients were independently classified by four orthopaedic trauma surgeons. We held a consensus meeting where observers agreed on a final classification and this served as our reference standard. We used weighted kappa (κ) coefficients of agreement.

RESULTS

Twenty-four fractures (18%) were deemed unclassifiable. The classification system demonstrated moderate inter-observer reliability (κ=0.54, 95% CI 0.40-0.68) but substantial reproducibility (κ=0.64, 95% CI 0.51-0.79). Accuracy, when compared with the reference standard, was κ=0.54 (95% CI 0.40-0.66).

CONCLUSIONS

The obliquity of the fracture line, and fracture extension, created difficulty in classification in 26% of cases. 18% of our cases could not be classified by majority decision. Our results emphasise the challenges faced in classifying these fractures. Future work should focus on refining the Herscovici classification.

摘要

背景

尽管赫斯科维奇(Herscovici)分类系统在文献中有所应用,但尚未对其在内踝骨折中的应用进行评估。

方法

我们旨在确定赫斯科维奇分类的可靠性和准确性。130例患者的蒙片X线片由四位骨科创伤外科医生独立进行分类。我们召开了一次共识会议,与会观察人员就最终分类达成一致,这作为我们的参考标准。我们使用加权卡帕(κ)一致性系数。

结果

24例骨折(18%)被认为无法分类。该分类系统显示出中等程度的观察者间可靠性(κ=0.54,95%可信区间0.40 - 0.68),但具有较高的可重复性(κ=0.64,95%可信区间0.51 - 0.79)。与参考标准相比,准确性为κ=0.54(95%可信区间0.40 - 0.66)。

结论

骨折线的倾斜度和骨折延伸在26%的病例中造成了分类困难。我们18%的病例无法通过多数决进行分类。我们的结果强调了这些骨折分类面临的挑战。未来的工作应集中在完善赫斯科维奇分类上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验