Suppr超能文献

利用功能基因组筛选鉴定的蛋白质开发蛋白亚单位疫苗,为猪提供针对强毒猪链球菌的显著保护。

Use of Proteins Identified through a Functional Genomic Screen To Develop a Protein Subunit Vaccine That Provides Significant Protection against Virulent Streptococcus suis in Pigs.

机构信息

USDA, ARS, National Animal Disease Center, Ames, Iowa, USA

USDA, ARS, National Animal Disease Center, Ames, Iowa, USA.

出版信息

Infect Immun. 2018 Feb 20;86(3). doi: 10.1128/IAI.00559-17. Print 2018 Mar.

Abstract

is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent While subunit vaccination with the proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different serotypes, indicating a potential for cross protection.

摘要

是一种常见的呼吸道细菌,也是猪最重要的侵袭性病原体之一,常引起脑膜炎、关节炎和败血症。由于存在许多血清型和广泛的免疫逃避能力,有效的疫苗并不容易获得。通过功能基因组筛选鉴定适应性基因,并选择保守的预测表面相关蛋白,从而选择用于疫苗的蛋白质候选物。选择了 5 种候选蛋白进行疫苗试验评估,并与两种不同佐剂配方中的一种一起经鼻内和肌肉内给药。通过随后用强毒进行鼻内攻毒来评估临床保护效果。虽然用 蛋白进行亚单位疫苗接种会诱导针对每种蛋白的 IgG 抗体和针对蛋白池的细胞免疫反应,从而为强毒攻毒提供了实质性保护,但免疫反应的强度和保护程度取决于所给的佐剂类型。亚单位疫苗接种诱导针对不同 血清型的 IgG 反应,表明有交叉保护的潜力。

相似文献

2
Immunogenicity and cross-protective efficacy of double-mutant Streptococcus suis ΔSspepO/ΔSspspC serotypes 2 and 7.
Vaccine. 2019 Apr 10;37(16):2194-2199. doi: 10.1016/j.vaccine.2019.03.028. Epub 2019 Mar 20.
3
Evaluation of the protective efficacy of three novel identified membrane associated proteins of Streptococcus suis serotype 2.
Microb Pathog. 2024 Aug;193:106759. doi: 10.1016/j.micpath.2024.106759. Epub 2024 Jun 19.
4
Vaccination with Streptococcus suis serotype 2 recombinant 6PGD protein provides protection against S. suis infection in swine.
FEMS Microbiol Lett. 2009 Jul;296(1):78-83. doi: 10.1111/j.1574-6968.2009.01617.x. Epub 2009 May 5.
6
Streptococcus suis manganese transporter mutant as a live attenuated vaccine: Safety, efficacy, and virulence reversion mechanisms.
Vet Microbiol. 2025 Jun;305:110521. doi: 10.1016/j.vetmic.2025.110521. Epub 2025 Apr 14.
7
Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9.
Vaccine. 2016 Dec 12;34(51):6529-6538. doi: 10.1016/j.vaccine.2016.05.003. Epub 2016 Jun 24.
8
Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs.
Comp Immunol Microbiol Infect Dis. 2016 Aug;47:52-9. doi: 10.1016/j.cimid.2016.06.001. Epub 2016 Jun 4.
9
Immunization with recombinant Sao protein confers protection against Streptococcus suis infection.
Clin Vaccine Immunol. 2007 Aug;14(8):937-43. doi: 10.1128/CVI.00046-07. Epub 2007 Jun 13.

引用本文的文献

1
Autogenous Streptococcus suis serotype 1 bacterin: immunogenicities of sow and gilt vaccination protocols.
Porcine Health Manag. 2025 Jul 18;11(1):40. doi: 10.1186/s40813-025-00453-6.
3
Combined Immunoinformatics to Design and Evaluate a Multi-Epitope Vaccine Candidate against Infection.
Vaccines (Basel). 2024 Jan 29;12(2):137. doi: 10.3390/vaccines12020137.
6
Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Serotype 9 infection in a mouse model.
Front Cell Infect Microbiol. 2023 Feb 21;13:1027419. doi: 10.3389/fcimb.2023.1027419. eCollection 2023.
7
Engineering Antigens to Assemble into Polymer Particle Vaccines for Prevention of Infection.
Vaccines (Basel). 2021 Nov 24;9(12):1386. doi: 10.3390/vaccines9121386.
8
The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System.
J Innate Immun. 2022;14(2):69-88. doi: 10.1159/000516956. Epub 2021 Oct 14.

本文引用的文献

1
Genetic background impacts vaccine-induced reduction of pneumococcal colonization.
Vaccine. 2017 Sep 18;35(39):5235-5241. doi: 10.1016/j.vaccine.2017.08.023. Epub 2017 Aug 17.
2
Critical Streptococcus suis Virulence Factors: Are They All Really Critical?
Trends Microbiol. 2017 Jul;25(7):585-599. doi: 10.1016/j.tim.2017.02.005. Epub 2017 Mar 6.
3
Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs.
Comp Immunol Microbiol Infect Dis. 2016 Aug;47:52-9. doi: 10.1016/j.cimid.2016.06.001. Epub 2016 Jun 4.
4
Current Taxonomical Situation of Streptococcus suis.
Pathogens. 2016 Jun 24;5(3):45. doi: 10.3390/pathogens5030045.
5
The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries.
Bioinformatics. 2016 Apr 1;32(7):1109-11. doi: 10.1093/bioinformatics/btw022. Epub 2016 Jan 21.
6
Streptococcus suis vaccines: candidate antigens and progress.
Expert Rev Vaccines. 2015;14(12):1587-608. doi: 10.1586/14760584.2015.1101349. Epub 2015 Oct 15.
7
Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected].
PLoS One. 2015 Mar 31;10(3):e0121042. doi: 10.1371/journal.pone.0121042. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验