Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark.
Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Nørre Alle 41, 2200, Copenhagen, N, Denmark.
Sci Rep. 2017 Dec 4;7(1):16899. doi: 10.1038/s41598-017-17095-6.
The sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-to-express human membrane proteins suitable for biophysical characterization.
高度解析的人类膜蛋白结构数量稀少,严重限制了我们对分子生理学的理解和合理药物设计的能力。为了寻找一种标准化、廉价且易于处理的人类膜蛋白生产平台,我们深入研究了酿酒酵母生产高产量优质人类水通道蛋白的能力,重点研究了一些特征尚未充分阐明的成员,包括一些先前被证明难以分离的成员。利用 GFP 标记形式,我们全面优化了生产和纯化程序,最终所有 9 种 AQP 目标都获得了令人满意的产量。我们将获得的知识应用于成功放大从大型生物反应器中生产的组氨酸标记的人类 AQP10 的纯化。糖基化分析表明,AQP7 和 12 是 O-糖基化的,AQP10 是 N-糖基化的,而其他 AQPs 则没有糖基化。我们还进行了功能表征,发现 AQP2、6 和 8 允许水的通量,而 AQP3、7、9、10、11 和 12 也促进了甘油的通量。总之,我们的酿酒酵母平台为分离功能强大、难以表达的人类膜蛋白提供了一种强大的工具,适用于生物物理特性分析。