Suppr超能文献

评估频繁项集披露对隐私的影响。

Evaluating the Privacy Implications of Frequent Itemset Disclosure.

作者信息

Serra Edoardo, Vaidya Jaideep, Akella Haritha, Sharma Ashish

机构信息

CS Department, Boise State University, USA.

MSIS Department, Rutgers University, USA.

出版信息

ICT Syst Secur Priv Prot (2017). 2017 May;502:506-519. doi: 10.1007/978-3-319-58469-0_34. Epub 2017 May 4.

Abstract

Frequent itemset mining is a fundamental data analytics task. In many cases, due to privacy concerns, only the frequent itemsets are released instead of the underlying data. However, it is not clear how to evaluate the privacy implications of the disclosure of the frequent item-sets. Towards this, in this paper, we define the k-distant-IFM-solutions problem, which aims to find k transaction datasets whose pair distance is maximized. The degree of difference between the reconstructed datasets provides a way to evaluate the privacy risk. Since the problem is NP-hard, we propose a 2-approximate solution as well as faster heuristics, and evaluate them on real data.

摘要

频繁项集挖掘是一项基本的数据分析任务。在许多情况下,出于隐私考虑,只发布频繁项集而不发布基础数据。然而,目前尚不清楚如何评估频繁项集披露对隐私的影响。为此,在本文中,我们定义了k-距离-IFM-解决方案问题,其目的是找到k个交易数据集,使它们之间的成对距离最大化。重建数据集之间的差异程度提供了一种评估隐私风险的方法。由于该问题是NP难问题,我们提出了一种2近似解以及更快的启发式算法,并在真实数据上对它们进行了评估。

相似文献

1
Evaluating the Privacy Implications of Frequent Itemset Disclosure.
ICT Syst Secur Priv Prot (2017). 2017 May;502:506-519. doi: 10.1007/978-3-319-58469-0_34. Epub 2017 May 4.
2
On Differentially Private Frequent Itemset Mining.
VLDB J. 2012 Nov 1;6(1):25-36. doi: 10.14778/2428536.2428539.
3
Personalized privacy-preserving frequent itemset mining using randomized response.
ScientificWorldJournal. 2014;2014:686151. doi: 10.1155/2014/686151. Epub 2014 Mar 30.
4
Marginal frequent itemset mining for fault prevention of railway overhead contact system.
ISA Trans. 2022 Jul;126:276-287. doi: 10.1016/j.isatra.2021.07.018. Epub 2021 Jul 13.
5
The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree.
Comput Intell Neurosci. 2022 May 18;2022:7022168. doi: 10.1155/2022/7022168. eCollection 2022.
6
Quantifying the informativeness for biomedical literature summarization: An itemset mining method.
Comput Methods Programs Biomed. 2017 Jul;146:77-89. doi: 10.1016/j.cmpb.2017.05.011. Epub 2017 May 27.
7
TKFIM: Top-K frequent itemset mining technique based on equivalence classes.
PeerJ Comput Sci. 2021 Mar 8;7:e385. doi: 10.7717/peerj-cs.385. eCollection 2021.
8
A novel association rule mining approach using TID intermediate itemset.
PLoS One. 2018 Jan 19;13(1):e0179703. doi: 10.1371/journal.pone.0179703. eCollection 2018.
9
An efficient pattern growth approach for mining fault tolerant frequent itemsets.
Expert Syst Appl. 2020 Apr 1;143:113046. doi: 10.1016/j.eswa.2019.113046. Epub 2019 Oct 21.
10
Sparse random feature maps for the item-multiset kernel.
Neural Netw. 2021 Nov;143:500-514. doi: 10.1016/j.neunet.2021.06.024. Epub 2021 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验