Suppr超能文献

使用随机应答的个性化隐私保护频繁项集挖掘

Personalized privacy-preserving frequent itemset mining using randomized response.

作者信息

Sun Chongjing, Fu Yan, Zhou Junlin, Gao Hui

机构信息

Web Science Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

ScientificWorldJournal. 2014;2014:686151. doi: 10.1155/2014/686151. Epub 2014 Mar 30.

Abstract

Frequent itemset mining is the important first step of association rule mining, which discovers interesting patterns from the massive data. There are increasing concerns about the privacy problem in the frequent itemset mining. Some works have been proposed to handle this kind of problem. In this paper, we introduce a personalized privacy problem, in which different attributes may need different privacy levels protection. To solve this problem, we give a personalized privacy-preserving method by using the randomized response technique. By providing different privacy levels for different attributes, this method can get a higher accuracy on frequent itemset mining than the traditional method providing the same privacy level. Finally, our experimental results show that our method can have better results on the frequent itemset mining while preserving personalized privacy.

摘要

频繁项集挖掘是关联规则挖掘的重要第一步,它从海量数据中发现有趣的模式。频繁项集挖掘中的隐私问题日益受到关注。已经提出了一些工作来处理这类问题。在本文中,我们引入了一种个性化隐私问题,其中不同的属性可能需要不同级别的隐私保护。为了解决这个问题,我们通过使用随机响应技术给出了一种个性化的隐私保护方法。通过为不同属性提供不同的隐私级别,该方法在频繁项集挖掘上比提供相同隐私级别的传统方法具有更高的准确率。最后,我们的实验结果表明,我们的方法在保护个性化隐私的同时,在频繁项集挖掘上可以取得更好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5969/3988866/7ea0cb8efe0d/TSWJ2014-686151.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验