Soares da Costa Tatiana P, Abbott Belinda M, Gendall Anthony R, Panjikar Santosh, Perugini Matthew A
Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
Biophys Rev. 2018 Apr;10(2):153-162. doi: 10.1007/s12551-017-0350-y. Epub 2017 Dec 5.
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
二氢吡啶二羧酸合酶(DHDPS)对于通过二氨基庚二酸(DAP)途径生产赖氨酸至关重要。鉴于已发现编码DHDPS的dapA基因对细菌和植物至关重要,近年来对这种关键的I类醛缩酶的功能、调控和结构的阐明一直是大量研究的重点。植物和一些细菌物种的DHDPS可观察到赖氨酸的变构抑制作用,后者在第56位(以大肠杆菌编号)需要一个组氨酸或谷氨酸而非碱性氨基酸。在结构上,两个DHDPS单体形成活性位点,该位点结合丙酮酸和(S)-天冬氨酸β-半醛,大多数二聚体进一步二聚化以围绕充满溶剂的中心腔形成四聚体排列。详细探讨了这些二聚体的二聚体的结构和行为,包括利用分析超速离心、小角X射线散射和大分子晶体学的生物物理研究,这些研究表明细菌DHDPS四聚体采用头对头的四级结构,而植物DHDPS酶则观察到背靠背的排列。最后,考虑了丙酮酸在提供底物介导的DHDPS稳定作用中的潜在作用。