Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
PLoS One. 2012;7(6):e38318. doi: 10.1371/journal.pone.0038318. Epub 2012 Jun 25.
Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.
二氢二吡啶羧酸合酶(DHDPS)催化细菌和植物中赖氨酸生物合成的限速步骤。已经从几种细菌物种中确定了 DHDPS 的结构,并且在大多数情况下,它形成四聚体或二聚体的二聚体。然而,迄今为止,只有一种植物 DHDPS 结构是从野生烟草物种 Nicotiana sylvestris(Blickling 等人(1997)J. Mol. Biol. 274, 608-621)中确定的。虽然 N. sylvestris DHDPS 也形成四聚体,但与细菌 DHDPS 四聚体观察到的“头对头”结构相比,植物酶采用“背靠背”二聚体的二聚体。这就提出了一个问题,即观察到的 N. sylvestris DHDPS 的替代四元结构是否普遍存在于所有植物 DHDPS 酶中。在这里,我们描述了来自葡萄植物 Vitis vinifera 的 DHDPS 的结构,并通过分析超速离心、小角度 X 射线散射和 X 射线晶体学表明,V. vinifera DHDPS 形成“背靠背”同源四聚体,与 N. sylvestris DHDPS 一致。这项研究首次使用晶体和溶液状态测量证明,来自葡萄植物的 DHDPS 采用与细菌形式不同的四聚体结构,这对于优化蛋白质动力学很重要,正如本研究中报道的分子动力学模拟所建议的那样。