Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Kurt-Mothes-Strasse 2, 06120, Halle (Saale), Germany.
Angew Chem Int Ed Engl. 2018 Jan 22;57(4):1078-1081. doi: 10.1002/anie.201711692. Epub 2018 Jan 4.
We present the first working system for accessing and utilizing laboratory-scale concentrations of hydrated electrons by photoredox catalysis with a green light-emitting diode (LED). Decisive are micellar compartmentalization and photon pooling in an intermediate that decays with second-order kinetics. The only consumable is the nontoxic and bioavailable vitamin C. A turnover number of 1380 shows the LED method to be on par with electron generation by high-power pulsed lasers, but at a fraction of the cost. The extreme reducing power of the electron and its long unquenched life as a ground-state species are synergistic. We demonstrate the applicability to the dechlorination, defluorination, and hydrogenation of compounds that are inert towards all other visible-light photoredox catalysts known to date. A comprehensive mechanistic investigation from microseconds to hours yields results of general validity for photoredox catalysis with photon pooling, allowing optimization and upscaling.
我们展示了第一个通过光还原催化使用绿色发光二极管 (LED) 来获取和利用实验室规模水合电子浓度的实用系统。关键在于胶束分隔和中间物的光子聚集,该中间物以二级动力学衰变。唯一的消耗品是无毒且可生物利用的维生素 C。1380 的周转率表明,与使用大功率脉冲激光器产生电子相比,LED 方法的成本要低得多,但效果相当。电子的极强还原能力及其作为基态物种的长未猝灭寿命具有协同作用。我们证明了该方法适用于迄今已知的所有可见光光还原催化剂对其惰性的化合物的脱氯、脱氟和加氢。从微秒到小时的全面机理研究为具有光子聚集的光还原催化提供了普遍有效的结果,允许进行优化和放大。