Kilgore Brian D
U.S. Geological Survey, 345 Middlefield Rd. MS-977, Menlo Park, CA 94025, USA.
Sensors (Basel). 2017 Dec 2;17(12):2790. doi: 10.3390/s17122790.
A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.
在实验室地球物理实验中,一种用于感应动态断层滑动的非接触式宽带方法采用了廉价的磁阻传感器、小型钕稀土磁体以及用户定制的专用宽带信号调节装置。磁阻传感器产生的电压与由附近磁体的差动运动或旋转所产生的、穿过该传感器的磁通线变化角度成正比。这些传感器阵列的性能与沿一个2米长×0.4米深的实验室走滑断层多个位置所采用的其他传统位置传感方法相比更具优势。对于这些磁阻传感器而言,悬臂式位置传感器安装中常见的共振信号缺失、超过许多传统位置传感器能力的宽带响应(直流至约100千赫兹)以及样品上所需的小空间,使其成为在这些实验室实验中获取高速断层滑动测量数据的有吸引力的选择。本研究一个意外的发现是该传感器对与断层破裂和(或)破裂扩展相关的高频电磁信号具有明显的敏感性,这可能为地震断层物理学提供新的见解。