Suppr超能文献

LARG GEF 和 ARHGAP18 协调 RhoA 活性以控制间充质干细胞谱系。

LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage.

机构信息

Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States.

Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.

出版信息

Bone. 2018 Feb;107:172-180. doi: 10.1016/j.bone.2017.12.001. Epub 2017 Dec 5.

Abstract

The quantity and quality of bone depends on osteoblastic differentiation of mesenchymal stem cells (MSCs), where adipogenic commitment depletes the available pool for osteogenesis. Cell architecture influences lineage decisions, where interfering with cytoskeletal structure promotes adipogenesis. Mechanical strain suppresses MSC adipogenesis partially through RhoA driven enhancement of cytoskeletal structure. To understand the basis of force-driven RhoA activation, we considered critical GEFs (activators) and GAPs (inactivators) on bone marrow MSC lineage fate. Knockdown of LARG accelerated adipogenesis and repressed basal RhoA activity. Importantly, mechanical activation of RhoA was almost entirely inhibited following LARG depletion, and the ability of strain to inhibit adipogenesis was impaired. Knockdown of ARHGAP18 increased basal RhoA activity and actin stress fiber formation, but did not enhance mechanical strain activation of RhoA. ARHGAP18 null MSCs exhibited suppressed adipogenesis assessed by Oil-Red-O staining and Western blot of adipogenic markers. Furthermore, ARHGAP18 knockdown enhanced osteogenic commitment, confirmed by alkaline phosphatase staining and qPCR of Sp7, Alpl, and Bglap genes. This suggests that ARHGAP18 conveys tonic inhibition of MSC cytoskeletal assembly, returning RhoA to an "off state" and affecting cell lineage in the static state. In contrast, LARG is recruited during dynamic mechanical strain, and is necessary for mechanical suppression of adipogenesis. In summary, mechanical activation of RhoA in mesenchymal progenitors is dependent on LARG, while ARHGAP18 limits RhoA delineated cytoskeletal structure in static cultures. Thus, on and off GTP exchangers work through RhoA to influence MSC fate and responses to static and dynamic physical factors in the microenvironment.

摘要

骨的数量和质量取决于间充质干细胞(MSCs)的成骨细胞分化,其中脂肪生成的承诺耗尽了可用的成骨池。细胞结构会影响谱系决定,而干扰细胞骨架结构会促进脂肪生成。机械应变通过 RhoA 驱动的细胞骨架结构增强来部分抑制 MSC 脂肪生成。为了了解力驱动 RhoA 激活的基础,我们考虑了骨髓 MSC 谱系命运的关键 GEFs(激活剂)和 GAPs(失活剂)。LARG 的敲低加速了脂肪生成并抑制了基础 RhoA 活性。重要的是,LARG 耗竭后几乎完全抑制了 RhoA 的机械激活,并且应变抑制脂肪生成的能力受损。ARHGAP18 的敲低增加了基础 RhoA 活性和肌动蛋白应力纤维形成,但并没有增强机械应变对 RhoA 的激活。通过油红-O 染色和脂肪生成标记物的 Western blot 评估,ARHGAP18 缺失 MSC 表现出抑制的脂肪生成。此外,ARHGAP18 的敲低增强了成骨细胞的承诺,这通过碱性磷酸酶染色和 Sp7、Alpl 和 Bglap 基因的 qPCR 得到证实。这表明 ARHGAP18 传递对 MSC 细胞骨架组装的紧张抑制,将 RhoA 恢复到“关闭状态”并影响静息状态下的细胞谱系。相比之下,LARG 在动态机械应变期间被募集,并且是机械抑制脂肪生成所必需的。总之,间充质祖细胞中 RhoA 的机械激活依赖于 LARG,而 ARHGAP18 在静态培养物中限制 RhoA 划定的细胞骨架结构。因此,ON 和 OFF GTP 交换蛋白通过 RhoA 发挥作用,影响 MSC 命运以及对微环境中静态和动态物理因素的反应。

相似文献

1
LARG GEF and ARHGAP18 orchestrate RhoA activity to control mesenchymal stem cell lineage.
Bone. 2018 Feb;107:172-180. doi: 10.1016/j.bone.2017.12.001. Epub 2017 Dec 5.
3
Phactr1 negatively regulates bone mass by inhibiting osteogenesis and promoting adipogenesis of BMSCs via RhoA/ROCK2.
J Mol Histol. 2022 Feb;53(1):119-131. doi: 10.1007/s10735-021-10031-z. Epub 2021 Oct 28.
5
Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal.
Endocrinology. 2008 Dec;149(12):6065-75. doi: 10.1210/en.2008-0687. Epub 2008 Aug 7.
7
Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.
J Cell Sci. 2009 Feb 15;122(Pt 4):546-53. doi: 10.1242/jcs.036293. Epub 2009 Jan 27.
8
Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells.
J Biol Chem. 2016 Aug 19;291(34):17829-47. doi: 10.1074/jbc.M116.736538. Epub 2016 Jul 11.
10
ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading, and motility.
Mol Biol Cell. 2011 Oct;22(20):3840-52. doi: 10.1091/mbc.E11-04-0364. Epub 2011 Aug 24.

引用本文的文献

5
Targeting ARHGEF12 promotes neuroblastoma differentiation, MYCN degradation, and reduces tumorigenicity.
Cell Oncol (Dordr). 2023 Feb;46(1):133-143. doi: 10.1007/s13402-022-00739-9. Epub 2022 Dec 15.
6
The skeleton in a physical world.
Exp Biol Med (Maywood). 2022 Dec;247(24):2213-2222. doi: 10.1177/15353702221113861. Epub 2022 Aug 19.
7
Apatinib Through Activating the RhoA/ROCK Signaling Pathway to Cause Dysfunction of Vascular Smooth Muscle Cells.
Appl Biochem Biotechnol. 2022 Nov;194(11):5367-5385. doi: 10.1007/s12010-022-04020-5. Epub 2022 Jul 1.
9
Architectural control of mesenchymal stem cell phenotype through nuclear actin.
Nucleus. 2022 Dec;13(1):35-48. doi: 10.1080/19491034.2022.2029297.
10
Arhgap21 Deficiency Results in Increase of Osteoblastic Lineage Cells in the Murine Bone Marrow Microenvironment.
Front Cell Dev Biol. 2021 Nov 30;9:718560. doi: 10.3389/fcell.2021.718560. eCollection 2021.

本文引用的文献

1
Become one with the force: optimising mechanotherapy through an understanding of mechanobiology.
Br J Sports Med. 2017 Jul;51(13):989-990. doi: 10.1136/bjsports-2017-097634.
2
Mechanisms of marrow adiposity and its implications for skeletal health.
Metabolism. 2017 Feb;67:106-114. doi: 10.1016/j.metabol.2016.11.013. Epub 2016 Nov 27.
3
FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling.
J Bone Miner Res. 2016 Dec;31(12):2227-2238. doi: 10.1002/jbmr.2908. Epub 2016 Oct 24.
4
7
Exercise Regulation of Marrow Fat in the Setting of PPARγ Agonist Treatment in Female C57BL/6 Mice.
Endocrinology. 2015 Aug;156(8):2753-61. doi: 10.1210/en.2015-1213. Epub 2015 Jun 8.
8
Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise.
Bone. 2014 Jul;64:39-46. doi: 10.1016/j.bone.2014.03.044. Epub 2014 Apr 5.
9
The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration.
Small GTPases. 2014;5:e27958. doi: 10.4161/sgtp.27958. Epub 2014 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验