Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States.
Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
Bone. 2018 Feb;107:172-180. doi: 10.1016/j.bone.2017.12.001. Epub 2017 Dec 5.
The quantity and quality of bone depends on osteoblastic differentiation of mesenchymal stem cells (MSCs), where adipogenic commitment depletes the available pool for osteogenesis. Cell architecture influences lineage decisions, where interfering with cytoskeletal structure promotes adipogenesis. Mechanical strain suppresses MSC adipogenesis partially through RhoA driven enhancement of cytoskeletal structure. To understand the basis of force-driven RhoA activation, we considered critical GEFs (activators) and GAPs (inactivators) on bone marrow MSC lineage fate. Knockdown of LARG accelerated adipogenesis and repressed basal RhoA activity. Importantly, mechanical activation of RhoA was almost entirely inhibited following LARG depletion, and the ability of strain to inhibit adipogenesis was impaired. Knockdown of ARHGAP18 increased basal RhoA activity and actin stress fiber formation, but did not enhance mechanical strain activation of RhoA. ARHGAP18 null MSCs exhibited suppressed adipogenesis assessed by Oil-Red-O staining and Western blot of adipogenic markers. Furthermore, ARHGAP18 knockdown enhanced osteogenic commitment, confirmed by alkaline phosphatase staining and qPCR of Sp7, Alpl, and Bglap genes. This suggests that ARHGAP18 conveys tonic inhibition of MSC cytoskeletal assembly, returning RhoA to an "off state" and affecting cell lineage in the static state. In contrast, LARG is recruited during dynamic mechanical strain, and is necessary for mechanical suppression of adipogenesis. In summary, mechanical activation of RhoA in mesenchymal progenitors is dependent on LARG, while ARHGAP18 limits RhoA delineated cytoskeletal structure in static cultures. Thus, on and off GTP exchangers work through RhoA to influence MSC fate and responses to static and dynamic physical factors in the microenvironment.
骨的数量和质量取决于间充质干细胞(MSCs)的成骨细胞分化,其中脂肪生成的承诺耗尽了可用的成骨池。细胞结构会影响谱系决定,而干扰细胞骨架结构会促进脂肪生成。机械应变通过 RhoA 驱动的细胞骨架结构增强来部分抑制 MSC 脂肪生成。为了了解力驱动 RhoA 激活的基础,我们考虑了骨髓 MSC 谱系命运的关键 GEFs(激活剂)和 GAPs(失活剂)。LARG 的敲低加速了脂肪生成并抑制了基础 RhoA 活性。重要的是,LARG 耗竭后几乎完全抑制了 RhoA 的机械激活,并且应变抑制脂肪生成的能力受损。ARHGAP18 的敲低增加了基础 RhoA 活性和肌动蛋白应力纤维形成,但并没有增强机械应变对 RhoA 的激活。通过油红-O 染色和脂肪生成标记物的 Western blot 评估,ARHGAP18 缺失 MSC 表现出抑制的脂肪生成。此外,ARHGAP18 的敲低增强了成骨细胞的承诺,这通过碱性磷酸酶染色和 Sp7、Alpl 和 Bglap 基因的 qPCR 得到证实。这表明 ARHGAP18 传递对 MSC 细胞骨架组装的紧张抑制,将 RhoA 恢复到“关闭状态”并影响静息状态下的细胞谱系。相比之下,LARG 在动态机械应变期间被募集,并且是机械抑制脂肪生成所必需的。总之,间充质祖细胞中 RhoA 的机械激活依赖于 LARG,而 ARHGAP18 在静态培养物中限制 RhoA 划定的细胞骨架结构。因此,ON 和 OFF GTP 交换蛋白通过 RhoA 发挥作用,影响 MSC 命运以及对微环境中静态和动态物理因素的反应。