Sen Buer, Xie Zhihui, Case Natasha, Thompson William R, Uzer Gunes, Styner Maya, Rubin Janet
Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
J Bone Miner Res. 2014 Jan;29(1):78-89. doi: 10.1002/jbmr.2031.
The cell cytoskeleton interprets and responds to physical cues from the microenvironment. Applying mechanical force to mesenchymal stem cells induces formation of a stiffer cytoskeleton, which biases against adipogenic differentiation and toward osteoblastogenesis. mTORC2, the mTOR complex defined by its binding partner rictor, is implicated in resting cytoskeletal architecture and is activated by mechanical force. We asked if mTORC2 played a role in mechanical adaptation of the cytoskeleton. We found that during bi-axial strain-induced cytoskeletal restructuring, mTORC2 and Akt colocalize with newly assembled focal adhesions (FA). Disrupting the function of mTORC2, or that of its downstream substrate Akt, prevented mechanically induced F-actin stress fiber development. mTORC2 becomes associated with vinculin during strain, and knockdown of vinculin prevents mTORC2 activation. In contrast, mTORC2 is not recruited to the FA complex during its activation by insulin, nor does insulin alter cytoskeletal structure. Further, when rictor was knocked down, the ability of mesenchymal stem cells (MSC) to enter the osteoblastic lineage was reduced, and when cultured in adipogenic medium, rictor-deficient MSC showed accelerated adipogenesis. This indicated that cytoskeletal remodeling promotes osteogenesis over adipogenesis. In sum, our data show that mTORC2 is involved in stem cell responses to biophysical stimuli, regulating both signaling and cytoskeletal reorganization. As such, mechanical activation of mTORC2 signaling participates in mesenchymal stem cell lineage selection, preventing adipogenesis by preserving β-catenin and stimulating osteogenesis by generating a stiffer cytoskeleton.
细胞细胞骨架可解读并响应来自微环境的物理信号。对间充质干细胞施加机械力会诱导形成更硬的细胞骨架,这有利于成骨细胞生成,而不利于脂肪生成。mTORC2是由其结合伴侣rictor所定义的mTOR复合物,与静止的细胞骨架结构有关,并被机械力激活。我们探究了mTORC2是否在细胞骨架的机械适应性中发挥作用。我们发现,在双轴应变诱导的细胞骨架重组过程中,mTORC2和Akt与新组装的粘着斑(FA)共定位。破坏mTORC2或其下游底物Akt的功能会阻止机械诱导的F-肌动蛋白应力纤维的形成。在应变过程中,mTORC2与纽蛋白结合,敲低纽蛋白会阻止mTORC2的激活。相比之下,在胰岛素激活mTORC2的过程中,它不会被招募到FA复合物中,胰岛素也不会改变细胞骨架结构。此外,敲低rictor后,间充质干细胞(MSC)进入成骨细胞谱系的能力降低,并且在脂肪生成培养基中培养时,缺乏rictor的MSC显示出加速的脂肪生成。这表明细胞骨架重塑促进成骨作用而非脂肪生成。总之,我们的数据表明,mTORC2参与干细胞对生物物理刺激的反应,调节信号传导和细胞骨架重组。因此,mTORC2信号的机械激活参与间充质干细胞谱系选择,通过保留β-连环蛋白来防止脂肪生成,并通过产生更硬的细胞骨架来刺激成骨作用。