Department of Physics, Stanford University, Stanford, CA 94305.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13430-13434. doi: 10.1073/pnas.1712533114. Epub 2017 Dec 5.
The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.
横场伊辛铁磁体是连续量子相变的典型范例。与仅依赖于对称性和空间维度的经典临界系统不同,量子相变的性质还取决于动力学。在横场伊辛模型中,序参量不守恒,随着横场的增加,量子涨落增强,直到它们足够强以恢复基态的对称性。伊辛赝自旋可以表示任何具有两倍简并破对称相的系统的序参量,包括与自发点群对称性破缺相关的电子向列序。在这里,我们以非克拉默双重态的轨道向列序为例进行说明,正交应变或垂直磁场起到横场的作用,从而为调整适当的材料到量子临界点提供了一种实际途径。虽然横场与看似不相关的序参量共轭,但它们与向列序参量的非平凡交换关系,这可以在有效场论中用贝里相位项表示,内在地交织了不同的序参量。