Wang Congli, Ulloa Mauricio, Duong Tra T, Roberts Philip A
Department of Nematology, University of California, Riverside, Riverside, CA, United States.
Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
Front Plant Sci. 2017 Nov 20;8:1979. doi: 10.3389/fpls.2017.01979. eCollection 2017.
Transgressive segregation in cotton ( spp.) provides an important approach to enhance resistance to the major pest root-knot nematode (RKN) . Our previous studies reported transgressive RKN resistance in an intraspecific resistant NemX × susceptible SJ-2 recombinant inbred line (RIL) population and early generations of interspecific cross (susceptible Pima S-7) × (NemX). However, the underlying functional mechanisms for this phenomenon are not known. In this study, the region of RKN resistance gene on chromosome (Chr) 11 and its homoeologous Chr 21 was fine mapped with D genome reference sequence. Transgressive resistance was found in the later generation of a new RIL population F (Pima S-7 × NemX) and one interspecific F (susceptible Pima S-7 × susceptible SJ-2). QTL analysis revealed similar contributions to root-galling and egg-production resistance phenotypes associated with SSR marker CIR316 linked to resistance gene in NemX on Chr 11 in all seven populations analyzed. In testcross NemX × F (Pima S-7 × SJ-2) marker allele CIR069-271 from Pima S-7 linked to CIR316 contributed 63% of resistance to galling phenotype in the presence of . Similarly, in RIL population F (NemX × SJ-2), SJ-2 markers closely linked to CIR316 contributed up to 82% of resistance to root-galling. These results were confirmed in BCF SJ-2 × F (NemX × SJ-2), F (NemX × SJ-2), and F (Pima S-7 × SJ-2) populations in which up to 44, 36, and 15% contribution in resistance to galling was found, respectively. Transgressive segregation for resistance was universal in all intra- and inter-specific populations, although stronger transgressive resistance occurred in later than in early generations in the intraspecific cross compared with the interspecific cross. Transgressive effects on progeny from susceptible parents are possibly provided in the resistance region of chromosome 11 by tandemly arrayed allele (TAA) or gene (TAG) interactions contributing to transgressive resistance. Complex TAA and TAG recombination and interactions in the resistance region provide three genes and a model to study disease and transgressive resistance in polyploid plants, and novel genotypes for plant breeding.
棉花(棉属物种)中的超亲分离为增强对主要害虫根结线虫(RKN)的抗性提供了一条重要途径。我们之前的研究报道了在一个种内抗性NemX×感病SJ - 2重组自交系(RIL)群体以及种间杂交(感病的皮马S - 7)×(NemX)的早期世代中存在超亲RKN抗性。然而,这种现象背后的功能机制尚不清楚。在本研究中,利用D基因组参考序列对11号染色体及其同源21号染色体上的RKN抗性基因区域进行了精细定位。在一个新的RIL群体F(皮马S - 7×NemX)的后代以及一个种间F(感病的皮马S - 7×感病的SJ - 2)中发现了超亲抗性。QTL分析表明,在所有分析的七个群体中,与11号染色体上与NemX抗性基因相关的SSR标记CIR316对根瘤和产卵抗性表型的贡献相似。在测交NemX×F(皮马S - 7×SJ - 2)中,来自皮马S - 7的与CIR316连锁的标记等位基因CIR069 - 271在存在[具体条件未提及]时对根瘤表型的抗性贡献为63%。同样,在RIL群体F(NemX×SJ - 2)中,与CIR316紧密连锁的SJ - 2标记对根瘤抗性的贡献高达82%。这些结果在BCF SJ - 2×F(NemX×SJ - 2)、F(NemX×SJ - 2)和F(皮马S - 7×SJ - 2)群体中得到了证实,在这些群体中分别发现对根瘤抗性的贡献高达44%、36%和15%。抗性的超亲分离在所有种内和种间群体中普遍存在,尽管与种间杂交相比,种内杂交中晚期世代的超亲抗性比早期世代更强。对易感亲本后代的超亲效应可能是由串联排列的等位基因(TAA)或基因(TAG)相互作用在11号染色体的抗性区域提供的,这些相互作用有助于超亲抗性。抗性区域中复杂的TAA和TAG重组及相互作用提供了三个基因以及一个用于研究多倍体植物疾病和超亲抗性的模型,以及用于植物育种的新基因型。