Arslanova Sevara K, Ernazarova Ziraatkhan A, Ernazarova Dilrabo K, Turaev Ozod S, Safiullina Asiya K, Toshpulatov Abdulqahhor Kh, Kholova Madina D, Azimova Laylo A, Rafiyeva Feruza U, Gapparov Bunyod M, Khalikov Kuvandik K, Khidirov Mukhammad T, Iskandarov Abdulloh A, Kodirov Davron M, Turaev Obidjon Y, Maulyanov Salikhjan A, Udall Joshua A, Yu John Z, Kushanov Fakhriddin N
Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111208, Uzbekistan.
Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
Plants (Basel). 2025 May 26;14(11):1620. doi: 10.3390/plants14111620.
Expanding genetic variability of cultivated cotton () is essential for improving fiber quality and pest resistance. This study synthesized allotetraploids through interspecific hybridization between (A) and (G). Upon chromosome doubling using 0.2% colchicine, fertile FC allotetraploids (AAGG) were developed. Cytogenetic analysis confirmed chromosome stability of synthetic allotetraploids, and 74 polymorphic SSR markers verified hybridity and parental contributions. The FC hybrids exhibited enhanced resistance to cotton aphids () and whiteflies (Aleyrodidae), with respective infestation rates of 5.2-5.6% and 5.4-5.8%, lower than those of cv. Ravnak-1 (22.1% and 23.9%). Superior fiber length (25.0-26.0 mm) was observed in complex hybrids and backcross progeny, confirming the potential for trait introgression into elite cultivars. Phylogenetic analysis based on SSR data clearly differentiated from Australian wild species, demonstrating successful bridging of divergent genomes. The FC hybrids consistently expressed dominant -derived traits regardless of the hybridization direction and clustered phylogenetically closer to the wild parent. These synthetic allotetraploids could broaden the genetic base of , addressing cultivation constraints through improved biotic stress resilience and fiber quality traits. The study establishes a robust framework for utilizing wild species to overcome genetic bottlenecks in conventional cotton breeding programs.
扩大栽培棉花()的遗传变异性对于提高纤维品质和抗虫性至关重要。本研究通过(A)和(G)之间的种间杂交合成了异源四倍体。使用0.2%秋水仙碱进行染色体加倍后,培育出了可育的FC异源四倍体(AAGG)。细胞遗传学分析证实了合成异源四倍体的染色体稳定性,74个多态性SSR标记验证了杂种性和亲本贡献。FC杂种对棉蚜()和粉虱(粉虱科)表现出增强的抗性,侵染率分别为5.2 - 5.6%和5.4 - 5.8%,低于Ravnak - 1品种(22.1%和23.9%)。在复合杂种和回交后代中观察到了优良的纤维长度(25.0 - 26.0毫米),证实了将性状渗入优良品种的潜力。基于SSR数据的系统发育分析清楚地将与澳大利亚野生种区分开来,表明成功地跨越了不同的基因组。无论杂交方向如何,FC杂种始终表达源自的显性性状,并且在系统发育上更接近野生亲本聚类。这些合成异源四倍体可以拓宽的遗传基础,通过提高生物胁迫抗性和纤维品质性状来解决栽培限制。该研究建立了一个强大的框架,用于利用野生种克服传统棉花育种计划中的遗传瓶颈。