Deplazes Evelyne, Poger David, Cornell Bruce, Cranfield Charles G
School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia.
Phys Chem Chem Phys. 2017 Dec 20;20(1):357-366. doi: 10.1039/c7cp06776c.
This work seeks to identify the mechanisms by which hydronium ions (HO) modulate the structure of phospholipid bilayers by studying the interactions of HO with phospholipids at the molecular level. For this, we carried out multiple microsecond-long unrestrained molecular dynamics (MD) simulations of a POPC bilayer at different HO concentrations. The results show that HO accumulates at the membrane surface where it displaces water and forms strong and long-lived hydrogen bonds with the phosphate and carbonyl oxygens in phospholipids. This results in a concentration-dependent reduction of the area per lipid and an increase in bilayer thickness. This study provides an important molecular-level insight into the mechanism of how HO modulates the structure of biological membranes and is a critical step towards a better understanding of the effect of low pH on mammalian and bacterial membranes.
这项工作旨在通过在分子水平上研究水合氢离子(HO)与磷脂的相互作用,来确定水合氢离子调节磷脂双层结构的机制。为此,我们对不同HO浓度下的POPC双层进行了多次长达微秒的无约束分子动力学(MD)模拟。结果表明,HO在膜表面聚集,在那里它取代了水,并与磷脂中的磷酸根和羰基氧形成强而持久的氢键。这导致每个脂质的面积呈浓度依赖性减小,双层厚度增加。这项研究为HO如何调节生物膜结构的机制提供了重要的分子水平见解,是朝着更好地理解低pH对哺乳动物和细菌膜的影响迈出的关键一步。