Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina.
Curr Med Chem. 2019;26(7):1113-1154. doi: 10.2174/0929867325666171205153204.
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of "cholestatic" signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
胆汁的生成是由渗透活性物质从窦状血液向受限空间(胆小管)的向量转移驱动的。因此,与胆汁形成相关的肝细胞转运体的定位对于胆汁分泌至关重要。肝细胞转运体定位于质膜或再循环内体中,从那里可以按需重新定位到质膜,或者当需求减少时被内吞。因此,这种再循环隔室的内吞/外排靶向之间的平衡是肝脏生成胆汁和处理内源性和外源性毒物的主要决定因素。此外,内吞作用的加剧是实验性和人类胆汁淤积症中的共同病理机制;这导致胆汁分泌失败,并且最终通过增加降解导致翻译后转运体下调。这篇综述总结了导致这种病理状况的拟议结构机制(例如,F-肌动蛋白或 F-肌动蛋白/转运体交联蛋白的功能、定位或表达的改变,以及向它们可以被轻易内吞的膜微区的转变),以及所涉及的介质(例如,“胆汁淤积”信号转导途径的触发)。最后,我们讨论了使用一些基于触发胆小管转运体外排靶向的化合物的治疗性实验方法来抵抗转运体内化引起的胆汁淤积失败的疗效(例如,cAMP、牛磺熊脱氧胆酸)。这种治疗方法可以补充旨在转录改善转运体表达的治疗方法,为新合成的转运体提供适当的定位和膜稳定性。