Suppr超能文献

基于学习的粒子滤波在可见光系统中的目标跟踪

Learning based particle filtering object tracking for visible-light systems.

作者信息

Sun Wei

机构信息

School of Aerospace Science and Technology, Xidian University, No. 2 Tabai Rd., Xi'an 710071, China.

出版信息

Optik (Stuttg). 2015 Oct;126(19):1830-1837. doi: 10.1016/j.ijleo.2015.05.018. Epub 2015 May 15.

Abstract

We propose a novel object tracking framework based on online learning scheme that can work robustly in challenging scenarios. Firstly, a learning-based particle filter is proposed with color and edge-based features. We train a. support vector machine (SVM) classifier with object and background information and map the outputs into probabilities, then the weight of particles in a particle filter can be calculated by the probabilistic outputs to estimate the state of the object. Secondly, the tracking loop starts with Lucas-Kanade (LK) affine template matching and follows by learning-based particle filter tracking. Lucas-Kanade method estimates errors and updates object template in the positive samples dataset, and learning-based particle filter tracker will start if the LK tracker loses the object. Finally, SVM classifier evaluates every tracked appearance to update the training set or restart the tracking loop if necessary. Experimental results show that our method is robust to challenging light, scale and pose changing, and test on eButton image sequence also achieves satisfactory tracking performance.

摘要

我们提出了一种基于在线学习方案的新型目标跟踪框架,该框架能够在具有挑战性的场景中稳健运行。首先,提出了一种基于颜色和边缘特征的基于学习的粒子滤波器。我们使用目标和背景信息训练一个支持向量机(SVM)分类器,并将输出映射为概率,然后通过概率输出计算粒子滤波器中粒子的权重,以估计目标的状态。其次,跟踪循环从Lucas-Kanade(LK)仿射模板匹配开始,随后是基于学习的粒子滤波器跟踪。Lucas-Kanade方法估计误差并在正样本数据集中更新目标模板,如果LK跟踪器丢失目标,则基于学习的粒子滤波器跟踪器将启动。最后,SVM分类器评估每个跟踪到的外观,以更新训练集或在必要时重新启动跟踪循环。实验结果表明,我们的方法对具有挑战性的光照、尺度和姿态变化具有鲁棒性,并且在eButton图像序列上的测试也取得了令人满意的跟踪性能。

相似文献

1
Learning based particle filtering object tracking for visible-light systems.基于学习的粒子滤波在可见光系统中的目标跟踪
Optik (Stuttg). 2015 Oct;126(19):1830-1837. doi: 10.1016/j.ijleo.2015.05.018. Epub 2015 May 15.
2
Learning Deep Lucas-Kanade Siamese Network for Visual Tracking.用于视觉跟踪的深度卢卡斯-卡纳德连体网络学习
IEEE Trans Image Process. 2021;30:4814-4827. doi: 10.1109/TIP.2021.3076272. Epub 2021 May 7.
9
Robust Object Tracking with Online Multiple Instance Learning.基于在线多示例学习的鲁棒目标跟踪。
IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1619-32. doi: 10.1109/TPAMI.2010.226. Epub 2010 Dec 23.
10
Object Tracking Based On Huber Loss Function.基于Huber损失函数的目标跟踪
Vis Comput. 2019 Nov;35(11):1641-1654. doi: 10.1007/s00371-018-1563-1. Epub 2018 May 24.

本文引用的文献

2
Designing a Wearable Computer for Lifestyle Evaluation.设计一款用于生活方式评估的可穿戴计算机。
Proc IEEE Annu Northeast Bioeng Conf. 2012;2012:93-94. doi: 10.1109/NEBC.2012.6206978.
3
Tracking-Learning-Detection.跟踪-学习-检测。
IEEE Trans Pattern Anal Mach Intell. 2012 Jul;34(7):1409-22. doi: 10.1109/TPAMI.2011.239. Epub 2011 Dec 13.
4
The template update problem.模板更新问题。
IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):810-5. doi: 10.1109/TPAMI.2004.16.
6
Ensemble tracking.集成跟踪
IEEE Trans Pattern Anal Mach Intell. 2007 Feb;29(2):261-71. doi: 10.1109/TPAMI.2007.35.
7
Support vector tracking.支持向量跟踪
IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1064-72. doi: 10.1109/TPAMI.2004.53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验