Cai Qing-Bo, Xu Xiao-Wei, Zhou Guorong
School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, 362000 China.
School of Mathematical Sciences, Xiamen University, Xiamen, 361005 China.
J Inequal Appl. 2017;2017(1):284. doi: 10.1186/s13660-017-1559-9. Epub 2017 Nov 14.
In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of [Formula: see text]-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.
在本文中,我们基于[公式:见原文]整数的概念构造了Kantorovich型伯恩斯坦 - 斯坦库 - 舒勒算子的二元张量积推广形式。我们得到了这些算子的矩和中心矩,通过使用二元情形下的完全连续性模给出了收敛速度,并估计了Lipschitz连续函数的收敛定理。我们还给出了一些图形和数值例子来说明这些算子对某些函数的收敛性质。