Suppr超能文献

康托罗维奇型伯恩斯坦 - 斯坦库 - 舒勒算子的二元张量积[公式:见原文]类似物。

Bivariate tensor product [Formula: see text]-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators.

作者信息

Cai Qing-Bo, Xu Xiao-Wei, Zhou Guorong

机构信息

School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, 362000 China.

School of Mathematical Sciences, Xiamen University, Xiamen, 361005 China.

出版信息

J Inequal Appl. 2017;2017(1):284. doi: 10.1186/s13660-017-1559-9. Epub 2017 Nov 14.

Abstract

In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of [Formula: see text]-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

摘要

在本文中,我们基于[公式:见原文]整数的概念构造了Kantorovich型伯恩斯坦 - 斯坦库 - 舒勒算子的二元张量积推广形式。我们得到了这些算子的矩和中心矩,通过使用二元情形下的完全连续性模给出了收敛速度,并估计了Lipschitz连续函数的收敛定理。我们还给出了一些图形和数值例子来说明这些算子对某些函数的收敛性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7d0/5686288/f4e83340daa6/13660_2017_1559_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验