Suppr超能文献

由-Lupaş-Schurer-Kantorovich算子逼近

Approximation by -Lupaş-Schurer-Kantorovich operators.

作者信息

Kanat Kadir, Sofyalıoğlu Melek

机构信息

Ankara Hacı Bayram Veli University Polatlı Faculty of Science and Arts, Ankara, Turkey.

出版信息

J Inequal Appl. 2018;2018(1):263. doi: 10.1186/s13660-018-1858-9. Epub 2018 Sep 26.

Abstract

In the current paper, we examine the -analogue of Kantorovich type Lupaş-Schurer operators with the help of -Jackson integral. Then, we estimate the rate of convergence for the constructed operators by using the modulus of continuity in terms of a Lipschitz class function and by means of Peetre's K-functionals based on Korovkin theorem. Moreover, we illustrate the approximation of the -Lupaş-Schurer-Kantorovich operators to appointed functions by the help of Matlab algorithm and then show the comparison of the convergence of these operators with Lupaş-Schurer operators based on -integers.

摘要

在本文中,我们借助(q -)杰克逊积分研究了康德罗维奇型卢帕斯 - 舒勒算子的(q -)类似物。然后,我们通过使用基于利普希茨类函数的连续性模以及借助基于科罗夫金定理的彼得雷(K -)泛函来估计所构造算子的收敛速度。此外,我们借助Matlab算法说明了(q -)卢帕斯 - 舒勒 - 康德罗维奇算子对指定函数的逼近,然后展示了这些算子与基于(q -)整数的卢帕斯 - 舒勒算子的收敛性比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2230/6182429/3d3c6430c81e/13660_2018_1858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验