Das Kinkar Chandra, Yang Yujun
Department of Mathematics, Sungkyunkwan University, Suwon, 440-746 Republic of Korea.
School of Mathematics and Information Science, Yantai University, Yantai, 264005 P.R. China.
J Inequal Appl. 2017;2017(1):296. doi: 10.1186/s13660-017-1570-1. Epub 2017 Nov 28.
Let [Formula: see text] be a simple graph. The resistance distance between [Formula: see text], denoted by [Formula: see text], is defined as the net effective resistance between nodes and in the corresponding electrical network constructed from by replacing each edge of with a resistor of 1 Ohm. The resistance-distance matrix of , denoted by [Formula: see text], is a [Formula: see text] matrix whose diagonal entries are 0 and for [Formula: see text], whose -entry is [Formula: see text]. In this paper, we determine the eigenvalues of the resistance-distance matrix of complete multipartite graphs. Also, we give some lower and upper bounds on the largest eigenvalue of the resistance-distance matrix of complete multipartite graphs. Moreover, we obtain a lower bound on the second largest eigenvalue of the resistance-distance matrix of complete multipartite graphs.
设[公式:见文本]为一个简单图。节点[公式:见文本]之间的电阻距离,记为[公式:见文本],定义为在由[公式:见文本]通过将其每条边替换为一个1欧姆电阻而构建的相应电网络中节点[公式:见文本]和[公式:见文本]之间的净有效电阻。[公式:见文本]的电阻距离矩阵,记为[公式:见文本],是一个[公式:见文本]矩阵,其对角元素为0,对于[公式:见文本],其[公式:见文本]元素为[公式:见文本]。在本文中,我们确定了完全多部图的电阻距离矩阵的特征值。此外,我们给出了完全多部图的电阻距离矩阵最大特征值的一些上下界。而且,我们得到了完全多部图的电阻距离矩阵第二大特征值的一个下界。