Suppr超能文献

Six2 基因部分缺失会增加肾祖细胞的增殖,促进分支和肾单位数量。

Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number.

机构信息

Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia.

Murdoch Children's Research Institute, Parkville, Victoria, Australia.

出版信息

Kidney Int. 2018 Mar;93(3):589-598. doi: 10.1016/j.kint.2017.09.015. Epub 2017 Dec 6.

Abstract

The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.

摘要

肾脏中终末肾单位数量的调节机制尚未完全阐明。当自我更新的肾单位祖细胞群体开始分化时,肾单位的形成就会停止。这个祖细胞群体中的转录因子,如 SIX2,被认为可以控制促进自我更新的基因的表达,因此 SIX2 纯合缺失会导致过早的分化,并导致肾脏发育早期停止。相比之下,SIX2 杂合子被认为不受影响。通过定量形态计量学方法,我们发现 SIX2 杂合子的输尿管分支和终末肾单位数量增加了 18%,尽管 SIX2 蛋白和转录本水平降低。这伴随着肾单位祖细胞特征的明显转变,下调的祖细胞基因(如 Cited1 和 Meox1)明显减少,而其他基因不受影响。其净结果是肾单位祖细胞增殖增加,这可以通过 EdU(5-ethynyl-2'-deoxyuridine)标记的升高、MYC 蛋白的增加以及 MYC 靶基因的转录上调来评估。在 Fgf20-/-背景下,Six2 的杂合性导致祖细胞群体的过早分化,这证实了 Six2 杂合子中祖细胞的调节受到了损害。总的来说,我们的研究揭示了肾单位祖细胞对 SIX2 蛋白水平的独特剂量反应,其中 SIX2 在祖细胞增殖与自我更新中的作用是可分离的。

相似文献

1
Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number.
Kidney Int. 2018 Mar;93(3):589-598. doi: 10.1016/j.kint.2017.09.015. Epub 2017 Dec 6.
2
p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.
Development. 2015 Apr 1;142(7):1228-41. doi: 10.1242/dev.111617.
4
Mdm2 is required for maintenance of the nephrogenic niche.
Dev Biol. 2014 Mar 1;387(1):1-14. doi: 10.1016/j.ydbio.2014.01.009. Epub 2014 Jan 17.
6
Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor.
J Am Soc Nephrol. 2014 Nov;25(11):2584-95. doi: 10.1681/ASN.2013080896. Epub 2014 Apr 17.
10

引用本文的文献

2
A guide to studying 3D genome structure and dynamics in the kidney.
Nat Rev Nephrol. 2025 Feb;21(2):97-114. doi: 10.1038/s41581-024-00894-2. Epub 2024 Oct 15.
3
A biomimetic branching signal-passing tile assembly model with dynamic growth and disassembly.
J R Soc Interface. 2024 Aug;21(217):20230755. doi: 10.1098/rsif.2023.0755. Epub 2024 Aug 21.
4
SIX2 promotes cell plasticity via Wnt/β-catenin signalling in androgen receptor independent prostate cancer.
Nucleic Acids Res. 2024 Jun 10;52(10):5610-5623. doi: 10.1093/nar/gkae206.
5
Human pluripotent stem cell-derived kidney organoids: Current progress and challenges.
World J Stem Cells. 2024 Feb 26;16(2):114-125. doi: 10.4252/wjsc.v16.i2.114.
6
Regulation of nephron progenitor cell lifespan and nephron endowment.
Nat Rev Nephrol. 2022 Nov;18(11):683-695. doi: 10.1038/s41581-022-00620-w. Epub 2022 Sep 14.
8
Vascular deficiencies in renal organoids and ex vivo kidney organogenesis.
Dev Biol. 2021 Sep;477:98-116. doi: 10.1016/j.ydbio.2021.04.009. Epub 2021 May 15.
9
Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor.
Genes (Basel). 2021 Feb 23;12(2):318. doi: 10.3390/genes12020318.
10
ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling.
J Pathol. 2020 Nov;252(3):274-289. doi: 10.1002/path.5517. Epub 2020 Sep 24.

本文引用的文献

1
Repair after nephron ablation reveals limitations of neonatal neonephrogenesis.
JCI Insight. 2017 Jan 26;2(2):e88848. doi: 10.1172/jci.insight.88848.
2
Notch signaling promotes nephrogenesis by downregulating Six2.
Development. 2016 Nov 1;143(21):3907-3913. doi: 10.1242/dev.143503. Epub 2016 Sep 15.
3
Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip.
Dev Biol. 2016 Oct 15;418(2):297-306. doi: 10.1016/j.ydbio.2016.06.028. Epub 2016 Jun 23.
6
Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells.
Nat Biotechnol. 2015 Sep;33(9):970-9. doi: 10.1038/nbt.3271. Epub 2015 Jul 20.
7
A synthetic niche for nephron progenitor cells.
Dev Cell. 2015 Jul 27;34(2):229-41. doi: 10.1016/j.devcel.2015.06.021. Epub 2015 Jul 16.
8
Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor.
PLoS One. 2015 Jun 15;10(6):e0129242. doi: 10.1371/journal.pone.0129242. eCollection 2015.
9
Cell-cell interactions driving kidney morphogenesis.
Curr Top Dev Biol. 2015;112:467-508. doi: 10.1016/bs.ctdb.2014.12.002. Epub 2015 Feb 12.
10
limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015 Apr 20;43(7):e47. doi: 10.1093/nar/gkv007. Epub 2015 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验