Suppr超能文献

基于 DEM 的计算模型预测药物粉末中水分引起的内聚力。

DEM based computational model to predict moisture induced cohesion in pharmaceutical powders.

机构信息

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.

Genentech, South San Francisco, CA, USA.

出版信息

Int J Pharm. 2018 Jan 30;536(1):301-309. doi: 10.1016/j.ijpharm.2017.12.001. Epub 2017 Dec 5.

Abstract

Pharmaceutical powder flow can alter significantly based on the exposed humidity conditions, and lack of computational models to predict the same may undermine process development, optimization, and scale-up performances. A Discrete Element Model (DEM) is proposed to predict the effects of humidity on pharmaceutical powder flow by altering the cohesive forces based on granular bond numbers in simple hopper geometries. Experiments analogous to the simulations are further performed for three commonly used pharmaceutical excipients at 20%, 40% and 60% RH. The equivalent DEM based bond numbers to predict the powder flow tendencies are in good accordance with the experimental results and can be a useful tool to predict the outcomes of different pharmaceutical processing techniques at various humidity conditions.

摘要

药物粉末的流动性能会显著受到暴露湿度条件的影响,而缺乏能够预测这种影响的计算模型可能会影响到工艺开发、优化和放大性能。本文提出了一种离散元模型(DEM),通过基于颗粒结合数改变粘性力来预测湿度对药物粉末流动性能的影响,该模型适用于简单料斗几何形状。进一步针对三种常用药物辅料在 20%、40%和 60%相对湿度下进行了与模拟相似的实验。基于 DEM 预测粉末流动趋势的等效结合数与实验结果吻合较好,可作为一种有用的工具,用于预测不同药物加工技术在不同湿度条件下的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验