Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
National Graphene Institute and School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
Science. 2017 Dec 8;358(6368):1303-1306. doi: 10.1126/science.aan0877.
Conversion of electric current into heat involves microscopic processes that operate on nanometer length scales and release minute amounts of power. Although central to our understanding of the electrical properties of materials, individual mediators of energy dissipation have so far eluded direct observation. Using scanning nanothermometry with submicrokelvin sensitivity, we visualized and controlled phonon emission from individual atomic-scale defects in graphene. The inferred electron-phonon "cooling power spectrum" exhibits sharp peaks when the Fermi level comes into resonance with electronic quasi-bound states at such defects. Rare in the bulk but abundant at graphene's edges, switchable atomic-scale phonon emitters provide the dominant dissipation mechanism. Our work offers insights for addressing key materials challenges in modern electronics and enables control of dissipation at the nanoscale.
电流转化为热涉及微观过程,这些过程在纳米长度尺度上运行,并释放出微小的能量。尽管这是我们理解材料电学性质的核心,但能量耗散的单个介质迄今仍难以直接观察到。我们使用具有亚微开尔文灵敏度的扫描纳米测温法,在石墨烯中可视化和控制了单个原子尺度缺陷的声子发射。当费米能级与这种缺陷处的电子准束缚态共振时,推断出的电子-声子“冷却功率谱”会出现尖锐的峰。在块状材料中很少见但在石墨烯边缘却很丰富的可切换原子尺度声子发射器提供了主要的耗散机制。我们的工作为解决现代电子学中的关键材料挑战提供了思路,并实现了纳米尺度上的耗散控制。