Central Analytical Research Facility, Insitutue for Future Environments, Queensland University of Technology , Brisbane, Queensland 4000, Australia.
Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99354, United States.
Anal Chem. 2018 Jan 16;90(2):1292-1300. doi: 10.1021/acs.analchem.7b04091. Epub 2017 Dec 21.
One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS, and high resolution mass spectrometry. Modification of an IMS-capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressure trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities, and in all cases, the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions, geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes including human plasma.
当代脂质组学面临的最大挑战之一在于分离和鉴定仅在不饱和部位或碳-碳双键的几何构型上存在差异的脂质异构体。虽然包括离子淌度谱(IMS)和液相色谱(LC)在内的分析分离技术可以在适当的条件下分离异构脂质,但传统的串联质谱技术无法提供明确的鉴定。为了解决这一挑战,我们在 LC、IMS 和高分辨率质谱中实施了臭氧诱导解离(OzID)。对具有 IMS 功能的四极杆飞行时间质谱仪进行了修改,以允许在 IMS 前将臭氧引入高压捕集离子阱区域。这使得新型 LC-OzID-IMS-MS 配置成为可能,其中离子化脂质的臭氧分解迅速(10 ms),无需预先进行质量选择。LC 洗脱时间对齐以及臭氧分解产物的精确质量和到达时间提取,便于在没有质量选择(和相关的占空比降低)的情况下关联前体和产物离子。使用此工作流程在正离子和负离子模式下检查了 11 类不饱和脂质,在所有情况下,都可以根据可预测的 OzID 转换明确分配碳-碳双键的位置。在这些条件下,几何异构体表现出不同的 IMS 到达时间分布和不同的 OzID 产物离子比,为复杂脂质中顺/反双键的鉴别提供了一种手段。OzID 与多维分离的结合为在包括人血浆在内的复杂脂质组中轻松分析不饱和模式显示出巨大的潜力。