Suppr超能文献

利用钢渣实现CO矿化及利用以建立废弃物到资源的供应链

CO Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

作者信息

Pan Shu-Yuan, Chung Tai-Chun, Ho Chang-Ching, Hou Chin-Jen, Chen Yi-Hung, Chiang Pen-Chi

机构信息

Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10673, Taiwan.

Carbon Cycle Research Center, National Taiwan University, Taipei, 10674, Taiwan.

出版信息

Sci Rep. 2017 Dec 8;7(1):17227. doi: 10.1038/s41598-017-17648-9.

Abstract

Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO) emission and alkaline solid waste generation. In fact, most CO capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

摘要

通过电弧炉炼钢和生产波特兰水泥都是能源密集型和资源开发型过程,会产生大量二氧化碳(CO)排放和碱性固体废弃物。事实上,目前大多数二氧化碳捕获与封存技术成本过高,无法在工业中广泛应用。此外,由于电弧炉渣碱度高、有重金属浸出潜力且体积不稳定,在利用之前进行适当的稳定化处理仍然具有挑战性。在此,我们采用一种综合方法,利用电弧炉渣使烟气中的二氧化碳矿化,同时将反应产物用作辅助胶凝材料,以建立一条面向循环经济的废弃物到资源的供应链。我们发现,利用电弧炉渣可使烟气中的二氧化碳迅速矿化为方解石沉淀。碳酸化后的炉渣可成功用作混合水泥砂浆中的绿色建筑材料。据此估算,全球使用钢铁炉渣每年的二氧化碳减排潜力约为1.38亿吨。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7870/5722910/ca92f553ec11/41598_2017_17648_Fig1_HTML.jpg

相似文献

2
High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.
Environ Sci Technol. 2015 Oct 20;49(20):12380-7. doi: 10.1021/acs.est.5b02210. Epub 2015 Oct 2.
4
Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
Waste Manag Res. 2009 May;27(3):288-94. doi: 10.1177/0734242X08092025. Epub 2009 May 7.
5
Co-treatment of Waste From Steelmaking Processes: Steel Slag-Based Carbon Capture and Storage by Mineralization.
Front Chem. 2020 Oct 16;8:571504. doi: 10.3389/fchem.2020.571504. eCollection 2020.
6
Utilization of steelmaking slag for carbon capture and storage with flue gas.
Environ Sci Pollut Res Int. 2022 Jul;29(34):51065-51082. doi: 10.1007/s11356-021-17493-4. Epub 2021 Nov 16.
7
Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature.
Heliyon. 2019 Oct 10;5(10):e02602. doi: 10.1016/j.heliyon.2019.e02602. eCollection 2019 Oct.
8
Valorization of electric arc furnace primary steelmaking slags for cement applications.
Waste Manag. 2015 Jul;41:85-93. doi: 10.1016/j.wasman.2015.03.019. Epub 2015 Apr 8.
9
Application of iron and steel slags in mitigating greenhouse gas emissions: A review.
Sci Total Environ. 2022 Oct 20;844:157041. doi: 10.1016/j.scitotenv.2022.157041. Epub 2022 Jul 6.
10
Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed.
Environ Sci Technol. 2013 Apr 2;47(7):3308-15. doi: 10.1021/es304975y. Epub 2013 Mar 18.

引用本文的文献

1
Managing carbon waste in a decarbonized industry: Assessing the potential of concrete mixing storage.
Environ Sci Pollut Res Int. 2024 Mar;31(12):17804-17821. doi: 10.1007/s11356-023-31712-0. Epub 2024 Jan 5.
2
Mechanistic insight into mineral carbonation and utilization in cement-based materials at solid-liquid interfaces.
RSC Adv. 2019 Oct 2;9(53):31052-31061. doi: 10.1039/c9ra06118e. eCollection 2019 Sep 26.
4
Chemical Batteries with CO.
Angew Chem Int Ed Engl. 2022 Feb 7;61(7):e202007397. doi: 10.1002/anie.202007397. Epub 2021 Dec 16.

本文引用的文献

1
BOF steel slag as a low-cost sorbent for vanadium (V) removal from soil washing effluent.
Sci Rep. 2017 Sep 11;7(1):11177. doi: 10.1038/s41598-017-11682-3.
2
Materials and engineering: Rebuilding the world.
Nature. 2017 May 17;545(7654):S15-S20. doi: 10.1038/545S15a.
3
Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions.
Science. 2016 Jun 10;352(6291):1312-4. doi: 10.1126/science.aad8132.
4
High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.
Environ Sci Technol. 2015 Oct 20;49(20):12380-7. doi: 10.1021/acs.est.5b02210. Epub 2015 Oct 2.
6
A review of mineral carbonation technologies to sequester CO2.
Chem Soc Rev. 2014 Dec 7;43(23):8049-80. doi: 10.1039/c4cs00035h. Epub 2014 Jul 1.
8
Sequestration of Martian CO2 by mineral carbonation.
Nat Commun. 2013;4:2662. doi: 10.1038/ncomms3662.
9
Kinetic modeling on CO₂ capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed.
J Hazard Mater. 2013 Sep 15;260:937-46. doi: 10.1016/j.jhazmat.2013.06.052. Epub 2013 Jun 28.
10
Ex Situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed.
Environ Sci Technol. 2013 Apr 2;47(7):3308-15. doi: 10.1021/es304975y. Epub 2013 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验