Max-Planck-Institute for Metabolism Research Cologne, Gleueler Str. 50, 50931, Cologne, Germany.
Brain Struct Funct. 2018 Mar;223(2):569-587. doi: 10.1007/s00429-017-1584-y. Epub 2017 Dec 9.
Cerebellum and basal ganglia are reciprocally interconnected with the neocortex via oligosynaptic loops. The signal pathways of these loops predominantly converge in motor areas of the frontal cortex and are mainly segregated on subcortical level. Recent evidence, however, indicates subcortical interaction of these systems. We have reviewed literature that addresses the question whether, and to what extent, projections of main output nuclei of basal ganglia (reticular part of the substantia nigra, internal segment of the globus pallidus) and cerebellum (deep cerebellar nuclei) interact with each other in the thalamus. To this end, we compiled data from electrophysiological and anatomical studies in rats, cats, dogs, and non-human primates. Evidence suggests the existence of convergence of thalamic projections originating in basal ganglia and cerebellum, albeit sparse and restricted to certain regions. Four regions come into question to contain converging inputs: (1) lateral parts of medial dorsal nucleus (MD); (2) parts of anterior intralaminar nuclei and centromedian and parafascicular nuclei (CM/Pf); (3) ventromedial nucleus (VM); and (4) border regions of cerebellar and ganglia terminal territories in ventral anterior and ventral lateral nuclei (VA-VL). The amount of convergences was found to exhibit marked interspecies differences. To explain the rather sparse convergences of projection territories and to estimate their physiological relevance, we present two conceivable principles of anatomical organization: (1) a "core-and-shell" organization, in which a central core is exclusive to one projection system, while peripheral shell regions intermingle and occasionally converge with other projection systems and (2) convergences that are characteristic to distinct functional networks. The physiological relevance of these convergences is not yet clear. An oculomotor network proposed in this work is an interesting candidate to examine potential ganglia and cerebellar subcortical interactions.
小脑和基底神经节通过少突突触回路与新皮层相互联系。这些回路的信号通路主要集中在前额叶皮层的运动区,并主要在下皮层水平上分离。然而,最近的证据表明这些系统的下皮层相互作用。我们回顾了文献,这些文献探讨了基底神经节(黑质网状部、苍白球内节)和小脑(小脑深部核)的主要输出核的投射是否以及在多大程度上在丘脑相互作用的问题。为此,我们编译了来自大鼠、猫、狗和非人类灵长类动物的电生理学和解剖学研究的数据。有证据表明,起源于基底神经节和小脑的丘脑投射存在会聚,尽管稀疏且仅限于某些区域。有四个区域被认为包含会聚输入:(1)内侧背核(MD)的外侧部分;(2)前内连合核和中央median 核和旁正中核(CM/Pf)的部分;(3)腹侧 medialis 核(VM);(4)腹前核和腹外侧核(VA-VL)中小脑和神经节终末区域的边界区域。发现会聚的数量存在明显的种间差异。为了解释投射区域的稀疏会聚,并估计其生理相关性,我们提出了两种可能的解剖组织原则:(1)“核心-壳”组织,其中核心区域是一个投射系统所独有的,而外围壳区域则相互混合,偶尔与其他投射系统会聚;(2)与特定功能网络相关的会聚。这些会聚的生理相关性尚不清楚。本文提出的眼球运动网络是一个有趣的候选者,可以用来研究潜在的神经节和小脑下皮层相互作用。