Suppr超能文献

大脑皮层-基底神经节可塑性在运动学习中的作用。

Cortico-basal ganglia plasticity in motor learning.

机构信息

Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.

Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

出版信息

Neuron. 2024 Aug 7;112(15):2486-2502. doi: 10.1016/j.neuron.2024.06.014. Epub 2024 Jul 12.

Abstract

One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.

摘要

大脑的一个关键功能是控制我们身体的运动,使我们能够与周围的世界互动。然而,许多运动行为并非天生的,而是需要通过反复练习来学习。在大脑的运动区域中,皮质基底节回路对于获得和执行运动技能尤为重要,这些区域的神经元活动与运动参数直接相关。活动模式和突触连接的细胞类型特异性适应性支持新运动技能的学习。在功能上,神经元活动序列变得有组织,并与所学的运动相关联。在突触水平上,特定的连接在学习过程中通过长时程突触可塑性和树突棘动力学等机制得到增强,这些机制被认为介导了功能回路的可塑性。因此,皮质基底节回路中的这些突触和回路适应性对于运动技能的获得至关重要,而这种可塑性的破坏可能导致运动障碍。

相似文献

1
Cortico-basal ganglia plasticity in motor learning.大脑皮层-基底神经节可塑性在运动学习中的作用。
Neuron. 2024 Aug 7;112(15):2486-2502. doi: 10.1016/j.neuron.2024.06.014. Epub 2024 Jul 12.
3
Synaptic correlates of the corticocortical circuit in motor learning.运动学习中皮质-皮质回路的突触相关性。
Philos Trans R Soc Lond B Biol Sci. 2024 Jul 29;379(1906):20230228. doi: 10.1098/rstb.2023.0228. Epub 2024 Jun 10.

引用本文的文献

本文引用的文献

2
The cerebellum.小脑。
Curr Biol. 2024 Jan 8;34(1):R7-R11. doi: 10.1016/j.cub.2023.11.048.
6
A high-performance speech neuroprosthesis.高性能言语神经假体
Nature. 2023 Aug;620(7976):1031-1036. doi: 10.1038/s41586-023-06377-x. Epub 2023 Aug 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验