Suppr超能文献

理解并敏化密度依赖型喹诺酮类抗生素持久性。

Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics.

机构信息

Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.

Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA.

出版信息

Mol Cell. 2017 Dec 21;68(6):1147-1154.e3. doi: 10.1016/j.molcel.2017.11.012. Epub 2017 Dec 7.

Abstract

Physiologic and environmental factors can modulate antibiotic activity and thus pose a significant challenge to antibiotic treatment. The quinolone class of antibiotics, which targets bacterial topoisomerases, fails to kill bacteria that have grown to high density; however, the mechanistic basis for this persistence is unclear. Here, we show that exhaustion of the metabolic inputs that couple carbon catabolism to oxidative phosphorylation is a primary cause of growth phase-dependent persistence to quinolone antibiotics. Supplementation of stationary-phase cultures with glucose and a suitable terminal electron acceptor to stimulate respiratory metabolism is sufficient to sensitize cells to quinolone killing. Using this approach, we successfully sensitize high-density populations of Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis to quinolone antibiotics. Our findings link growth-dependent quinolone persistence to discrete impairments in respiratory metabolism and identify a strategy to kill non-dividing bacteria.

摘要

生理和环境因素可以调节抗生素的活性,从而对抗生素治疗构成重大挑战。喹诺酮类抗生素靶向细菌拓扑异构酶,但不能杀死生长到高密度的细菌;然而,这种持久性的机制尚不清楚。在这里,我们表明,将碳分解代谢与氧化磷酸化偶联的代谢输入的耗尽是导致喹诺酮类抗生素依赖生长阶段持续存在的主要原因。用葡萄糖和合适的末端电子受体补充静止期培养物以刺激呼吸代谢足以使细胞对喹诺酮类抗生素敏感。使用这种方法,我们成功地使大肠杆菌、金黄色葡萄球菌和耻垢分枝杆菌的高密度群体对喹诺酮类抗生素敏感。我们的发现将与生长相关的喹诺酮类抗生素持续存在与呼吸代谢的离散损伤联系起来,并确定了一种杀死非分裂细菌的策略。

相似文献

1
Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics.
Mol Cell. 2017 Dec 21;68(6):1147-1154.e3. doi: 10.1016/j.molcel.2017.11.012. Epub 2017 Dec 7.
2
Mechanism of quinolone action and resistance.
Biochemistry. 2014 Mar 18;53(10):1565-74. doi: 10.1021/bi5000564. Epub 2014 Mar 7.
3
Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature.
Int J Antimicrob Agents. 2012 Jun;39(6):478-85. doi: 10.1016/j.ijantimicag.2012.02.007. Epub 2012 Apr 23.
4
Transferable mechanisms of quinolone resistance.
Int J Antimicrob Agents. 2012 Sep;40(3):196-203. doi: 10.1016/j.ijantimicag.2012.02.011. Epub 2012 Jul 23.
5
Apigenin as an anti-quinolone-resistance antibiotic.
Int J Antimicrob Agents. 2015 Dec;46(6):666-73. doi: 10.1016/j.ijantimicag.2015.09.006. Epub 2015 Oct 22.
6
[How can we protect against broad-band pathogens? The situation with quinolone resistance].
Pharm Unserer Zeit. 2001;30(5):436-45. doi: 10.1002/1615-1003(200109)30:5<436::AID-PAUZ436>3.0.CO;2-#.
7
Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance.
Molecules. 2020 Dec 1;25(23):5662. doi: 10.3390/molecules25235662.
8
Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria.
Antimicrob Agents Chemother. 2019 Jun 24;63(7). doi: 10.1128/AAC.02360-18. Print 2019 Jul.

引用本文的文献

1
Temperate phages increase antibiotic effectiveness in a infection model.
mBio. 2025 Aug 18:e0162125. doi: 10.1128/mbio.01621-25.
3
Post-fluoroquinolone treatment molecular events and nutrient availability modulate antibiotic persistence.
bioRxiv. 2025 Jun 26:2025.06.26.661800. doi: 10.1101/2025.06.26.661800.
4
Phage-Antibiotic Combinations for Pseudomonas: Successes in the Clinic and In Vitro Tenuously Connected.
Microb Biotechnol. 2025 Jul;18(7):e70193. doi: 10.1111/1751-7915.70193.
6
Antibiotic-persistent bacterial cells exhibiting low-level ROS are eradicated by ROS-independent membrane disruption.
mBio. 2025 Aug 13;16(8):e0119925. doi: 10.1128/mbio.01199-25. Epub 2025 Jun 30.
7
Bioenergetic stress potentiates antimicrobial resistance and persistence.
Nat Commun. 2025 Jun 9;16(1):5111. doi: 10.1038/s41467-025-60302-6.
8
Disruption of sulfur transferase complex increases bacterial intramacrophage persistence.
PLoS Pathog. 2025 May 14;21(5):e1013136. doi: 10.1371/journal.ppat.1013136. eCollection 2025 May.
9
Metabolic state-driven nutrient-based approach to combat bacterial antibiotic resistance.
NPJ Antimicrob Resist. 2025 Apr 4;3(1):24. doi: 10.1038/s44259-025-00092-5.
10
The role of bacterial metabolism in antimicrobial resistance.
Nat Rev Microbiol. 2025 Feb 20. doi: 10.1038/s41579-025-01155-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验