Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA.
Mol Cell. 2017 Dec 21;68(6):1147-1154.e3. doi: 10.1016/j.molcel.2017.11.012. Epub 2017 Dec 7.
Physiologic and environmental factors can modulate antibiotic activity and thus pose a significant challenge to antibiotic treatment. The quinolone class of antibiotics, which targets bacterial topoisomerases, fails to kill bacteria that have grown to high density; however, the mechanistic basis for this persistence is unclear. Here, we show that exhaustion of the metabolic inputs that couple carbon catabolism to oxidative phosphorylation is a primary cause of growth phase-dependent persistence to quinolone antibiotics. Supplementation of stationary-phase cultures with glucose and a suitable terminal electron acceptor to stimulate respiratory metabolism is sufficient to sensitize cells to quinolone killing. Using this approach, we successfully sensitize high-density populations of Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis to quinolone antibiotics. Our findings link growth-dependent quinolone persistence to discrete impairments in respiratory metabolism and identify a strategy to kill non-dividing bacteria.
生理和环境因素可以调节抗生素的活性,从而对抗生素治疗构成重大挑战。喹诺酮类抗生素靶向细菌拓扑异构酶,但不能杀死生长到高密度的细菌;然而,这种持久性的机制尚不清楚。在这里,我们表明,将碳分解代谢与氧化磷酸化偶联的代谢输入的耗尽是导致喹诺酮类抗生素依赖生长阶段持续存在的主要原因。用葡萄糖和合适的末端电子受体补充静止期培养物以刺激呼吸代谢足以使细胞对喹诺酮类抗生素敏感。使用这种方法,我们成功地使大肠杆菌、金黄色葡萄球菌和耻垢分枝杆菌的高密度群体对喹诺酮类抗生素敏感。我们的发现将与生长相关的喹诺酮类抗生素持续存在与呼吸代谢的离散损伤联系起来,并确定了一种杀死非分裂细菌的策略。