Suppr超能文献

代谢重编程增强了多重耐药菌和碳青霉烯耐药菌对抗生素的敏感性。

Metabolic reprogramming enhances the susceptibility of multidrug- and carbapenem-resistant bacteria to antibiotics.

作者信息

Kuang Su-Fang, Xiang Jiao, Li Shao-Hua, Su Yu-Bin, Chen Zhuang-Gui, Li Hui, Peng Bo, Peng Xuan-Xian

机构信息

State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China.

Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Pharmacy, Jiangxi Normal University, Nanchang, China.

出版信息

Nat Microbiol. 2025 Aug 11. doi: 10.1038/s41564-025-02083-8.

Abstract

Carbapenem-resistant Enterobacteriaceae and extended-spectrum β-lactamase-resistant bacterial pathogens are a major threat to human and global health. Alternative antibiotics are therefore used to treat infections caused by these pathogens, and approaches to increase their efficacy are needed. Here we used metabolomics, mutant Escherichia coli strains and whole-genome sequencing to examine the metabolic profiles of clinical carbapenem-resistant (CR-ECO), multidrug-resistant (MDR-ECO) and antibiotic-sensitive E. coli (S-ECO) isolates in response to antibiotics in vitro including micronomicin, an aminoglycoside. Downregulation of pyruvate formate-lyase (PFL) alters membrane permeability and reduces the efficacy of micronomicin, the most potent antibiotic, in CR-ECO and MDR-ECO. The metabolism of pyruvate to formate is required to potentiate the effects of micronomicin across multiple bacterial pathogens. Mice infected with CR-ECO and treated with formate plus micronomicin had reduced pathogen growth and spread, and increased survival, compared with mice treated with micronomicin or formate alone. Finally, elevated activity or expression of PFL and increased intracellular CO, a product of PFL- and formate dehydrogenase-dependent catabolism of formate, are required for antibiotic uptake and pathogen killing. The findings reveal a mechanism of metabolic reprogramming in MDR and CR bacteria for enhanced sensitivity to micronomicin.

摘要

耐碳青霉烯类肠杆菌科细菌和产超广谱β-内酰胺酶耐药菌病原体是对人类和全球健康的重大威胁。因此,人们使用替代抗生素来治疗由这些病原体引起的感染,并且需要提高其疗效的方法。在这里,我们使用代谢组学、突变型大肠杆菌菌株和全基因组测序来研究临床耐碳青霉烯类大肠杆菌(CR-ECO)、多重耐药大肠杆菌(MDR-ECO)和抗生素敏感大肠杆菌(S-ECO)分离株在体外对包括氨基糖苷类抗生素小诺米星在内的抗生素的代谢谱。丙酮酸甲酸裂解酶(PFL)的下调会改变膜通透性,并降低小诺米星(最有效的抗生素)对CR-ECO和MDR-ECO的疗效。丙酮酸向甲酸的代谢对于增强小诺米星对多种细菌病原体的作用是必需的。与单独用小诺米星或甲酸治疗的小鼠相比,感染CR-ECO并用甲酸加小诺米星治疗的小鼠病原体生长和扩散减少,存活率提高。最后,抗生素摄取和病原体杀灭需要PFL的活性或表达升高以及细胞内一氧化碳(甲酸的PFL和甲酸脱氢酶依赖性分解代谢产物)增加。这些发现揭示了MDR和CR细菌中代谢重编程以增强对小诺米星敏感性的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验