Suppr超能文献

运输诱导的硫同位素(δS)空间分布模式作为生物特征。

Transport-Induced Spatial Patterns of Sulfur Isotopes (δS) as Biosignatures.

机构信息

1 Geosciences Department, Pennsylvania State University, University Park , Pennsylvania.

2 Current address: Dept. of Geological Sciences, University of Texas at El Paso, El Paso, Texas.

出版信息

Astrobiology. 2018 Jan;18(1):59-72. doi: 10.1089/ast.2017.1650. Epub 2017 Dec 11.

Abstract

Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO·2HO) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δS) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δS values between -17 and -19‰. Over centimeter-length scales, the δS values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δS values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δS (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ∼13‰ variability in gypsum δS reflects isotopic distillation of circulating HS gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δS along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic processes that modify gypsum δS values over geological timescales. Key Words: Gypsum-Sulfur isotopes-Biosignature-Sulfide oxidation-Cave. Astrobiology 18, 59-72.

摘要

在微生物存在的情况下形成的洞穴矿物可能含有地球化学生物特征,可以用来探测地球、火星或其他可居住世界的地下生命。本文评估了意大利弗拉萨西洞穴系统中硫氧化微生物存在时形成的石膏(CaSO·2HO)的硫同位素组成,作为生物特征。洞穴房间内硫化空气条件下采集的石膏的硫同位素组成(δS)变化范围为-11 到-24‰,少量元素硫的 δS 值在-17 到-19‰之间。在厘米级尺度上,石膏的 δS 值变化高达 8.5‰。补充的实验室实验表明,由洞穴中分离的嗜酸硫杆菌氧化元素硫形成硫酸盐时,几乎没有分馏。此外,在洞穴墙壁酸性 pH 条件下,在有和没有微生物存在的情况下沉淀的石膏的 δS 值比硫酸盐高平均 1‰。因此,我们将洞穴石膏 δS 值(向更负的方向)的 8.5‰变化解释为微生物硫化物直接氧化为硫酸盐或通过元素硫中间产物的同位素效应。这一范围与无氧条件下硫化物氧化为氧的预期值相似,因此在厘米级尺度上使用硫同位素作为生物特征变得复杂。然而,在洞穴房间(米级)尺度上,反应传输模型表明,石膏 δS 值的总变化范围为∼13‰,这反映了由于沿洞穴墙壁-大气界面发生微生物硫化物氧化,循环 HS 气体的同位素蒸馏。因此,沿着气流路径的石膏 δS 的系统变化可以解释为生物成因,因为在相似的长度尺度上,缓慢的非生物氧化不能产生相同的空间模式。这种生物特征的表达和保存潜力取决于气体流动参数和改变石膏 δS 值的成岩过程,这些过程在地质时间尺度上起作用。关键词:石膏-硫同位素-生物特征-硫化物氧化-洞穴。天体生物学 18,59-72。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验