Suppr超能文献

以太:利用线性规划实现基因组学中云计算的最佳化。

Aether: leveraging linear programming for optimal cloud computing in genomics.

机构信息

Section on Pathophysiology and Molecular Pharmacology.

Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA.

出版信息

Bioinformatics. 2018 May 1;34(9):1565-1567. doi: 10.1093/bioinformatics/btx787.

Abstract

MOTIVATION

Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities.

RESULTS

Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear programming to optimally bid on and deploy combinations of underutilized cloud computing resources. Our approach simultaneously minimizes the cost of data analysis and provides an easy transition from users' existing HPC pipelines.

AVAILABILITY AND IMPLEMENTATION

Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosticlab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org.

CONTACT

chirag_patel@hms.harvard.edu or aleksandar.kostic@joslin.harvard.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在整个生物学领域,我们看到数据生产规模迅速扩大,但数据分析能力却没有相应提高。

结果

在这里,我们介绍了 Aether(http://aether.kosticlab.org),这是一个直观、易用、具有成本效益和可扩展的框架,它使用线性规划来最优地竞标和部署未充分利用的云计算资源组合。我们的方法同时最小化了数据分析的成本,并为用户现有的高性能计算管道提供了一个简单的过渡。

可用性和实现

使用的数据可在 https://pubs.broadinstitute.org/diabimmune 和 EBI SRA 访问号 ERP005989 获得。源代码可在(https://github.com/kosticlab/aether)获得。示例、文档和教程可在 http://aether.kosticlab.org 获得。

联系方式

chirag_patel@hms.harvard.edualeksandar.kostic@joslin.harvard.edu

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4005/5925767/3afd7ae01fc2/btx787f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验