Department of Chemical Engineering-(Bio)chemical Reactor Engineering and Safety, KU Leuven, Leuven, Belgium.
Department of Earth and Environmental Sciences - Division of Soil and Water Management, KU Leuven, Leuven, Belgium.
Appl Microbiol Biotechnol. 2018 Feb;102(3):1191-1201. doi: 10.1007/s00253-017-8681-y. Epub 2017 Dec 11.
Over the last decades, anaerobic bioreactor technology proved to be a competitive technology for purifying wastewater while producing biogas. Methanogens perform the crucial final step in methane production, and monitoring their activity is of paramount importance for system understanding and management. Cofactor F is an essential prosthetic group of the methyl-coenzyme M reductase (MCR) enzyme catalysing this final step. This research investigates whether the quantification of cofactor F in bioreactor systems is a viable intermediate-complexity monitoring tool in comparison to the conventional biogas and volatile fatty acid (VFA) concentration follow-up and molecular genetic techniques targeting the mcrA gene encoding the MCR protein or its transcripts. Cofactor F was quantified in a lab-scale anaerobic membrane bioreactor (AnMBR) using liquid chromatography. The system was subjected to two organic loading rate shocks, and the F content of the sludge was followed up alongside mcrA gene copy and transcript numbers and classical performance monitoring tools. The research showed for the first time the combined mcrA gene transcript and F content dynamics in an anaerobic bioreactor system and reveals their significant positive correlation with in situ methane production rate. The main difference between the two monitoring methods relates to the cofactor's slower degradation kinetics. The work introduces the use of cofactor F as a biomarker for methanogenic activity and, hence, as a monitoring tool that can be quantified within half a working day, yielding information directly related to in situ methanogenic activity in methanogenic reactors.
在过去的几十年中,厌氧生物反应器技术已被证明是一种用于净化废水同时生产沼气的有竞争力的技术。产甲烷菌在甲烷生产中起着至关重要的最后一步,监测其活性对于系统理解和管理至关重要。辅酶 F 是催化这最后一步的甲基辅酶 M 还原酶 (MCR) 酶的必需辅基。本研究调查了在生物反应器系统中定量测定辅酶 F 是否是一种可行的中间复杂监测工具,与传统的沼气和挥发性脂肪酸 (VFA) 浓度监测以及针对编码 MCR 蛋白或其转录物的 mcrA 基因的分子遗传技术相比。使用液相色谱法在实验室规模的厌氧膜生物反应器 (AnMBR) 中定量测定辅酶 F。该系统经历了两次有机负荷冲击,同时跟踪污泥中的 F 含量、mcrA 基因拷贝数和转录数以及经典性能监测工具。该研究首次在厌氧生物反应器系统中综合了 mcrA 基因转录物和 F 含量的动态,并揭示了它们与原位甲烷生成速率的显著正相关。这两种监测方法的主要区别在于辅酶的降解动力学较慢。这项工作介绍了将辅酶 F 用作产甲烷活性的生物标志物的用途,因此可以作为一种监测工具,在半天的工作时间内进行定量测定,直接提供与产甲烷反应器中原位产甲烷活性相关的信息。